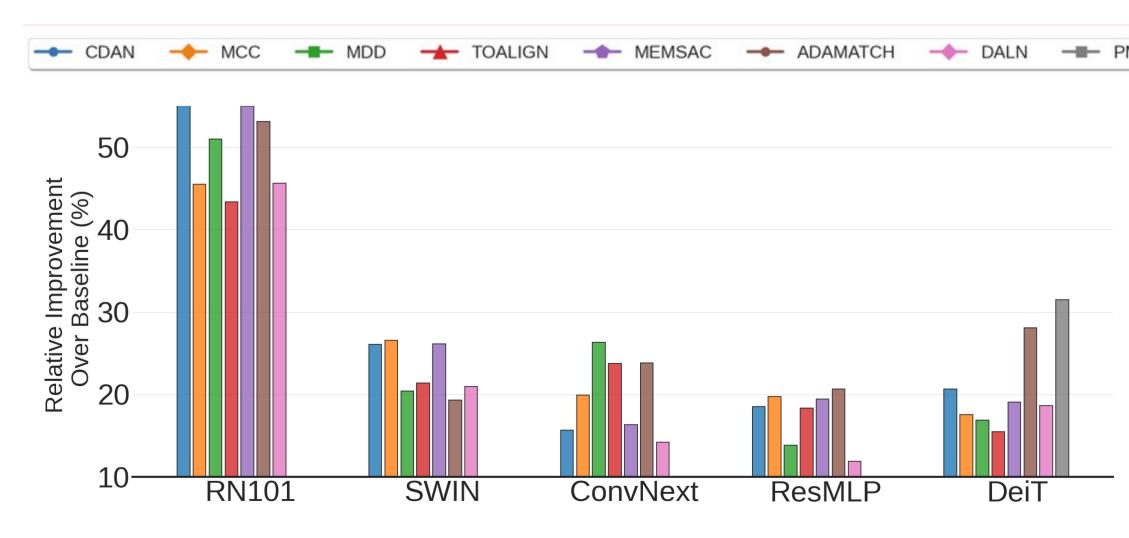
UDA-Bench: Revisiting Common Assumptions in Unsupervised UC San Diego **Domain Adaptation Using a Standardized Framework** Sreyas Ravichandran Manmohan Chandraker Tarun Kalluri

Empirical Study Using UDA-Bench Framework

- We conduct a large-scale empirical analysis to evaluate the competence of many current UDA algorithms.
- We revisit current UDA algorithms across three axes:
 - Backbone Architecture
 - II. Target Unlabeled Data
 - III. Pre-Training Data

1. Modern backbones diminish UDA performance.

UDA methods yield substantially lower gains with advanced backbones such as Swin and Deit.

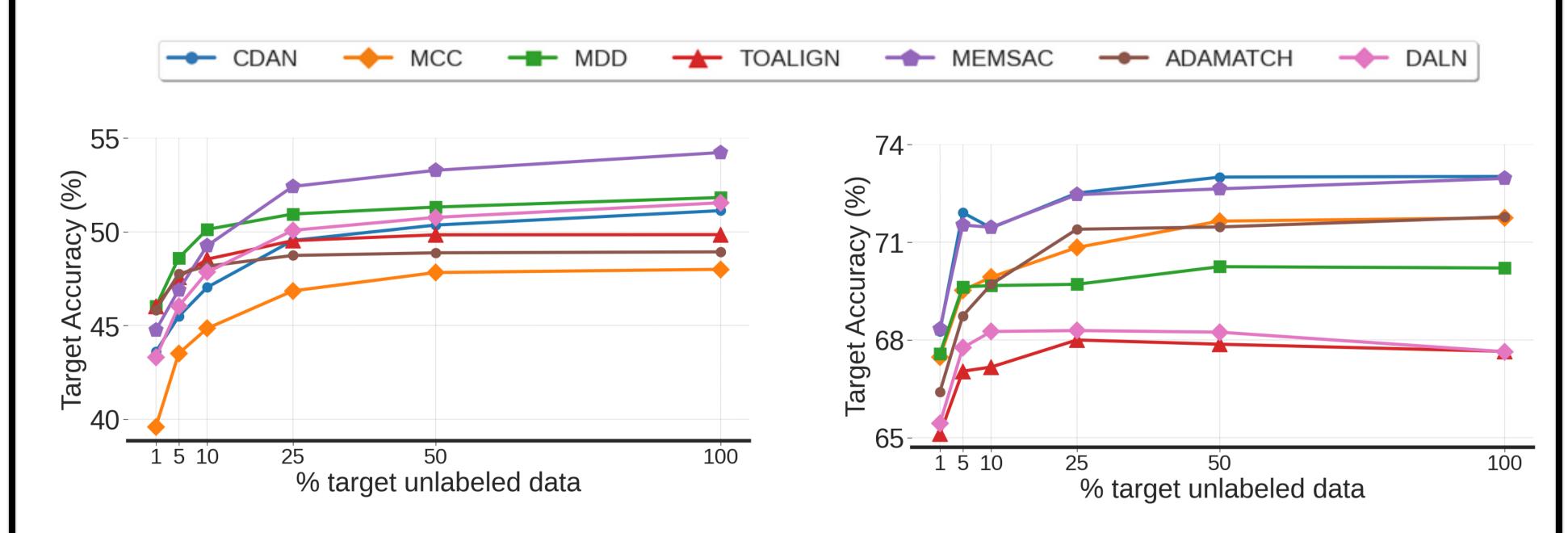


Got only few seconds? Here's a tldr!

We design a standardized training framework for domain adaptation called UDA-Bench and reveal several important empirical choices to improve the performance of UDA algorithms.

2. UDA Methods Under-Utilize **Unlabeled Data.**

- UDA methods fail to use increasing amount of unlabeled data and saturate quickly.
- 75% reduction in target unlabeled data resulted in only a 1% decrease in target accuracy across all UDA methods studied.



	Plain Transfer	(no adapt)	ToAlign [105]	MemSAC [41]	
Pre-training	DNet GeoP	CUB	DNet GeoP CUB	DNet GeoP CUB	
IN-1M	41.46 34.55	50.20	49.29 30.42 62.78	50.75 32.98 62.92	
PL-1M	35.14 41.95	40.83	38.55 34.9 55.29	41.93 40.16 54.22	
NAT-1M	$33.77 \ 31.53$	58.77	37.65 26.81 67.47	38.67 29.99 67.34	

	SwAV (ResNet50) [12]		MoCo-V3 (ViT-s/16) [16]		MAE (ViT-b/16) [32]	
Pretraining	DNet GeoP	CUB	DNet GeoP	CUB	DNet GeoF	CUB
IN-1M	44.6 36.33	51.81	34.33 30.35	52.61	44.91 34.07	64.26
PL-1M	$36.48 \ 41.14$	39.49	30.83 35.51	46.99	39.56 37.0 0) 53.68
NAT-1M	$31.6\ 28.75$	45.65	$28.24\ \ 26.01$	48.46	$38.48 \ 28.74$	59.7

3. Nature of Pre-Training Data Directly Impacts UDA.

In-task supervised pre-training helps unsupervised adaptation.

Self-supervised pre-training on objectcentric images helps downstream object-centric adaptation.

4. UDA-Bench publicly available.

UDA-Bench is opensourced for training and evaluating UDA methods (scan the QR!)

Contact for questions: sskallur@ucsd.edu

