

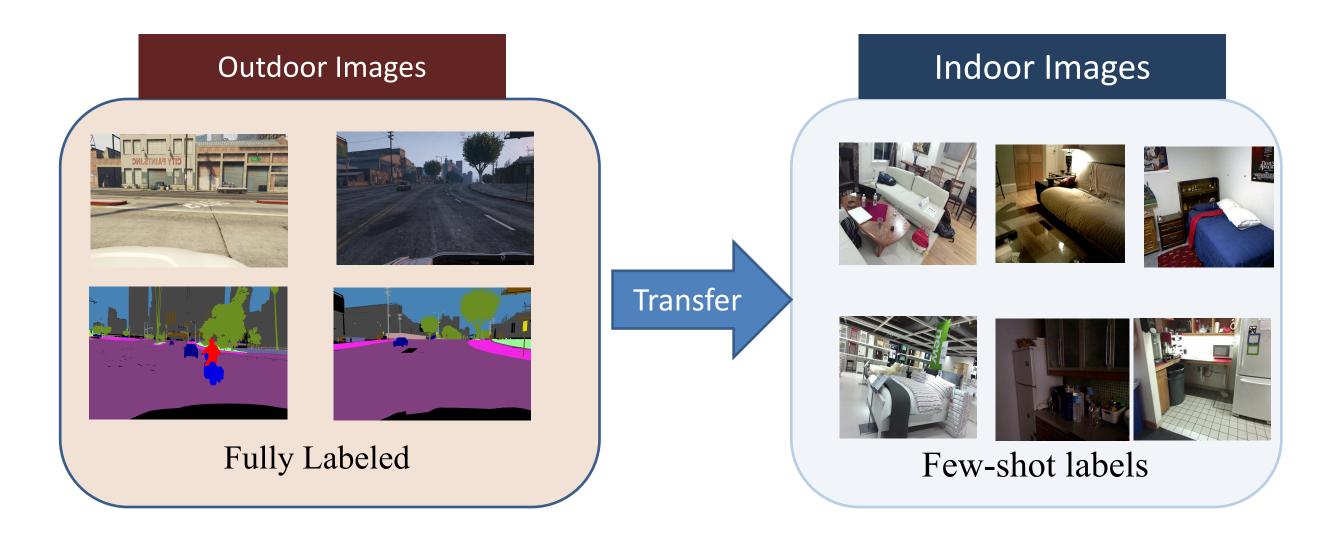
Cluster-to-adapt: Few Shot Domain Adaptation for Semantic Segmentation across Disjoint Labels Tarun Kalluri Manmohan Chandraker

CVPR 19-24 2022 NEW ORLEANS - LOUISIANA

ri Manmohan Chandı UC San Diego

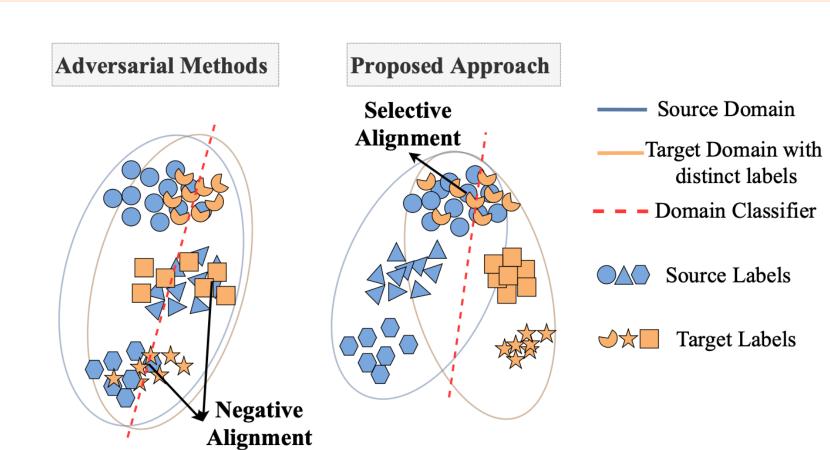
Domain Adaptive Semantic Segmentation

- Transfer a trained model for segmentation from a labeled source domain, such as synthetic images, to an unlabeled target domain, such as real images.
- Synthetic images are easier and cheaper to collect and label compared to real images.
- Existing adaptation works cannot transfer between two domains with disparate label spaces.
 - > Example: Outdoor scenes to indoor scenes.



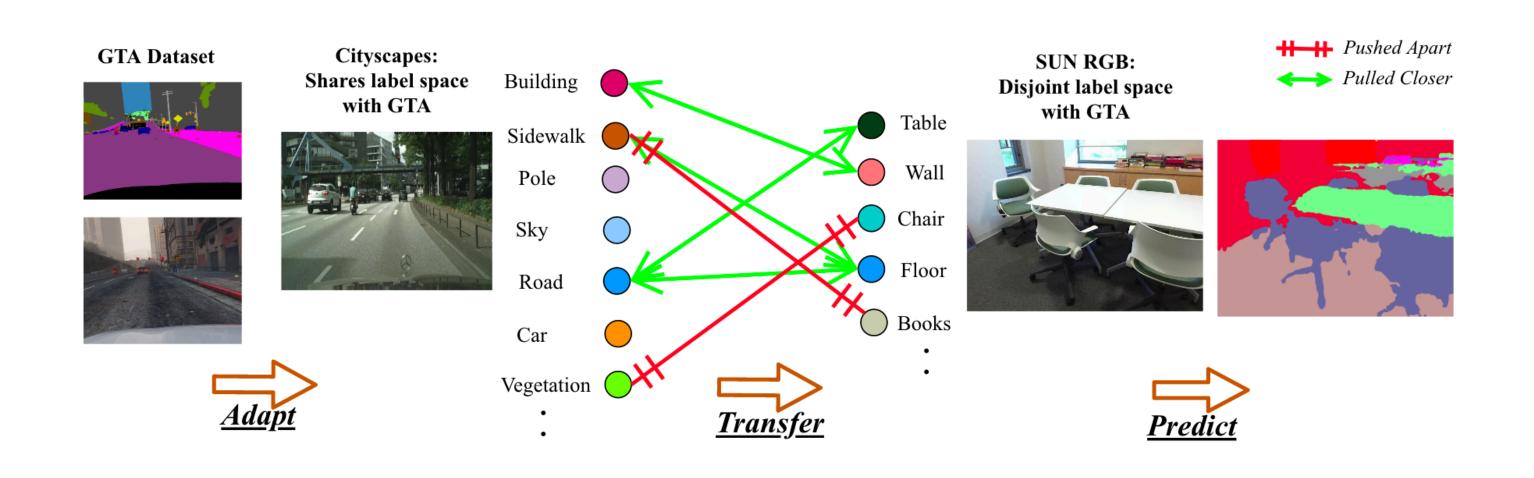
We consider the problem of domain adaptation across disjoint labels with few labels in the target.

Global Domain Alignment vs. Selective Alignment

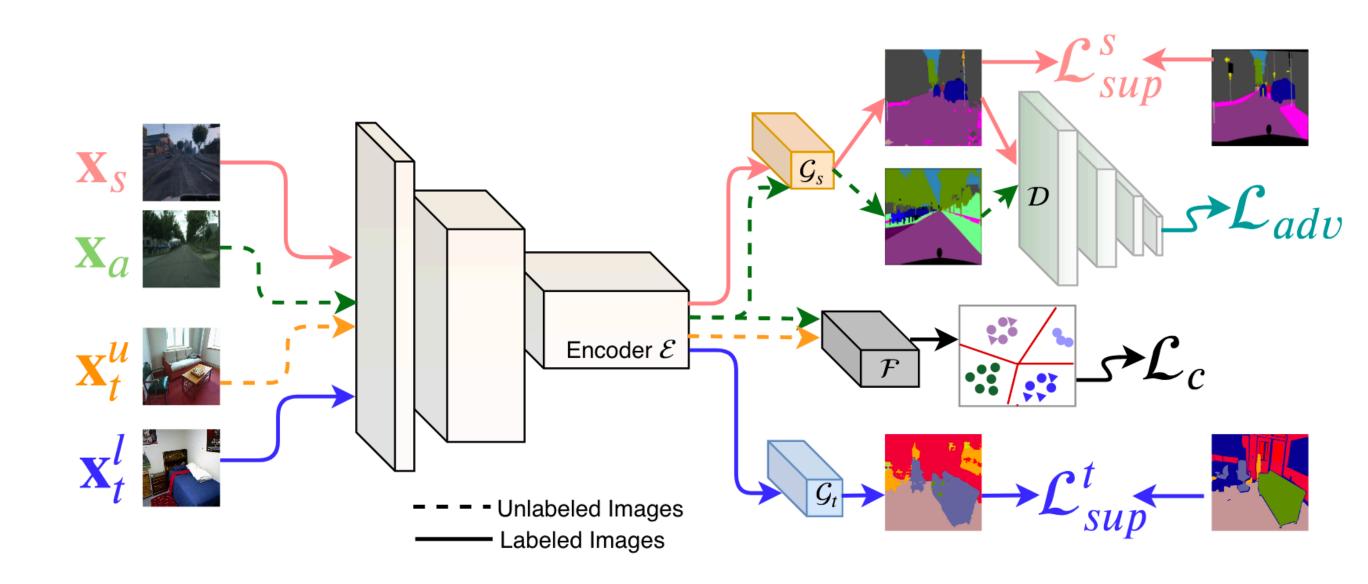


➤ Global alignment based may lead to negative transfer where different categories from source and target align post adaptation.

Using Unlabeled Bridges to Ease the Adaptation



Joint Training Using Constrained Clustering Objective

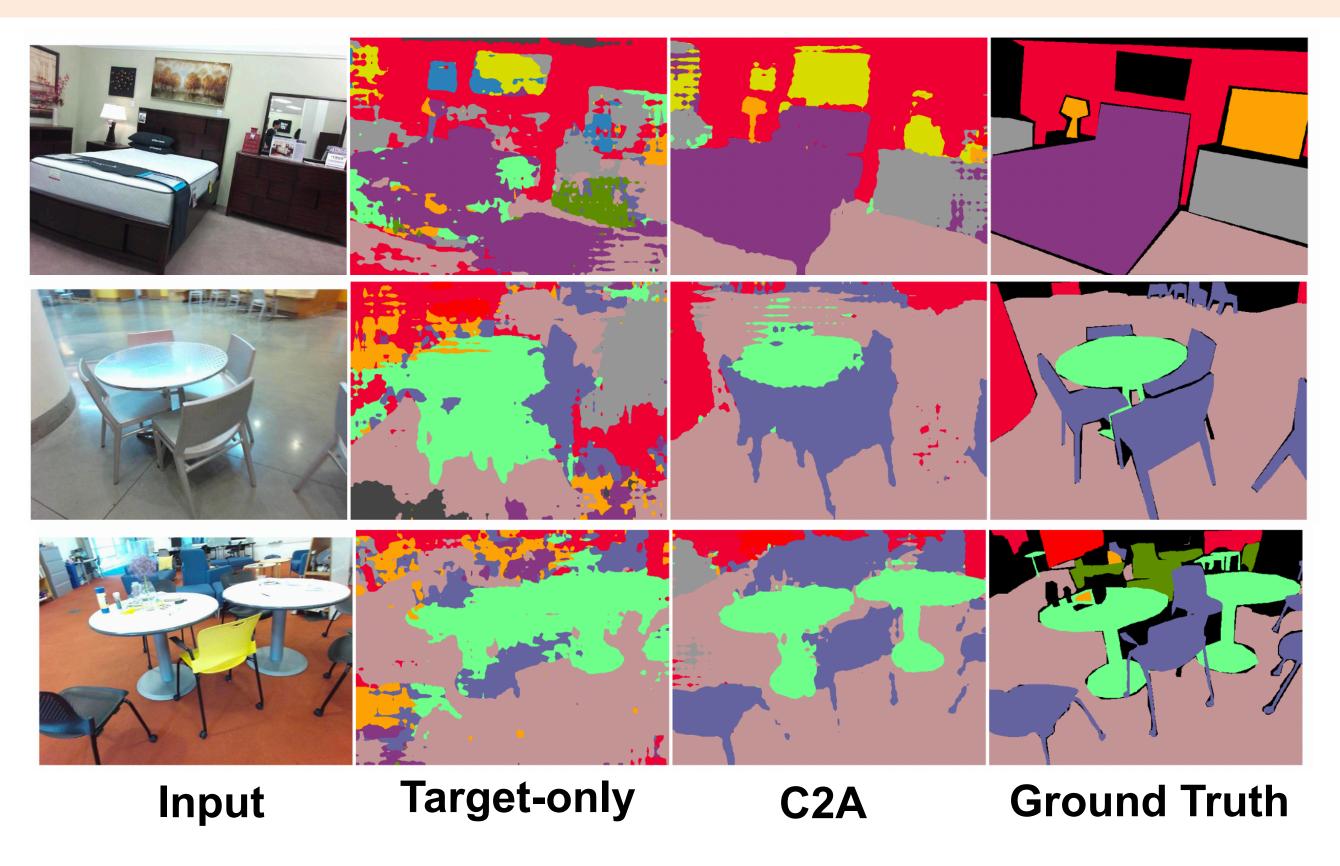


- Clustering loss groups the shared properties from source and target features into distinct groups, while preventing negative alignment.
- ho $p(\mu_k|v_j)$ is the probability that a feature v_j belongs to a cluster with center μ_k .

$$\mathcal{L}_c = \sum_{x \in \{\mathbb{D}_a, \mathbb{D}_t^u\}} \sum_{v_j \in \mathcal{F}(\mathcal{E}(x))} -\log(\max_k p(\mu_k | v_j)) \left[p(\mu_k | v_j) \propto \exp\left(\frac{v_j \cdot \mu_k}{||v_j||_2 ||\mu_k||_2}\right) \right]$$

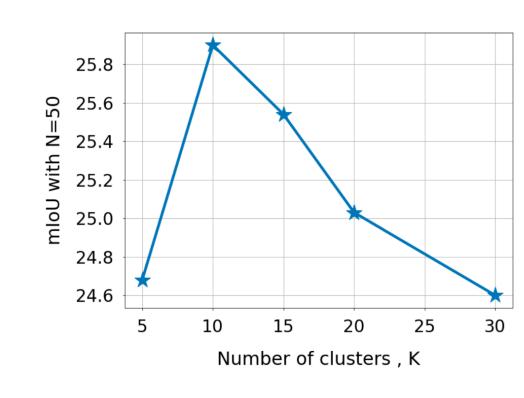
Total Loss: $\underset{\mathcal{E},\mathcal{G}_s,\mathcal{G}_t,\mathcal{F}}{\operatorname{arg\,min}}$ $\mathcal{L}_{sup} + \lambda_{adv}\mathcal{L}_{adv} + \lambda_{c}(\mathcal{L}_c + \mathcal{L}_{kl})$

Results on Few Shot Adaptation



- Few-shot training does not capture object boundaries well.
- C2A leverages larger scale synthetic data to improve segmentation.

	$\sigma = 0.01$	$\sigma = 0.04$	$\sigma = 0.1$	$\sigma = 0.3$
	N = 50	N = 200	N = 500	N = 1500
Target only	22.62	30.43	36.62	43.17
Adapt SegNet	25.20	32.51	36.90	43.83
LET	25.19	32.44	35.87	42.96
UnivSeg	22.21	31.32	36.08	42.10
Adv SemiSeg	24.72	33.22	38.46	45.10
C2A [Ours]	25.98	33.37	37.41	43.16



Limitations of our method

- ➤ The gains from C2A when enough target supervision is available are limited.
- The clustering is very noisy, and the classes aligned are related only sometimes.