UC San Diego

Overview: Instance Level Affinity-Based Transfer

V1 Lab

sual Intelligence Lab

Improve transferability and increase accuracy on unlabeled target domain of a model trained on labelled source domain and unlabeled target domain.

✓ Complementary **Before Adaptation Adversarial Adaptation** improvements to (a) adversarial 88 88 domain adaptation * * * * methods. Noisy pseudo-labels **Proposed Method** (C) ✓ Leverages sample level relationships useful for adaptation. 🗕 Domain Separation 🛛 🗙 🛦 Source 📥 Pull similar samples closer 🔶 🔶 Push away dissimilar samples – – Classifier Boundary 🛛 🗮 🔺 Target

Challenges

This work addresses the following challenges-

- \succ Domain Adaptation: Prior works on this only align global distributions. This does not guarantee alignment between the respective categories which might lead to negative transfer.
- Class Specific Adaptation: The performance of these methods is dependent on the pseudo-labeling hypothesis, leading to noisy predictions near the classifier boundaries.
- Metric Learning for Unsupervised Domain Adaptation: Prior works require complex sample strategies or do not leverage instance level relations.

Instance Level Affinity-Based Transfer for Unsupervised Domain Adaptation Astuti Sharma, Tarun Kalluri, Manmohan Chandraker

Illustration of Instance Affinity Matrix

Traini	ng Obje
Total Loss	\mathcal{L}_{adv}
$\min_{\mathcal{C},\mathcal{C}} \mathcal{L}_{sup} + \lambda_1 \mathcal{L}_{adv} + \lambda_2 \mathcal{L}_{MSC}$	\mathcal{L}_{MSC} =
min \mathcal{L}_D	
\mathcal{D}	\mathcal{L}^i_{MSC}
$\mathcal{L}_D = -\mathbb{E}_{x \sim \mathcal{D}^s}[\log \mathcal{D}(\mathcal{G}(x))]$	

 $-\mathbb{E}_{x\sim\mathcal{D}^t}[\log(1-\mathcal{D}(\mathcal{G}(x)))].$

*I*th row of affinity matrix A contains similarity information of *I*th source sample with every target sample in a mini-batch. MSC loss uses these relations to attract positive sample from target while separating negative ones.

ctive

$$\begin{aligned} \mathcal{L}_{adv} &= \mathbb{E}_{x \sim \mathcal{D}^t} \left[-\log \mathcal{D}(\mathcal{G}(x)) \right], \\ \mathcal{L}_{MSC} &= \frac{1}{|B_S|} \sum_{i=1}^{\infty} \mathcal{L}^i_{MSC}. \\ \mathcal{L}^i_{MSC} &= -\log \frac{\sum\limits_{j \in B_T^{i+}} e^{\phi(f_i, f_j)}}{\sum\limits_{j \in B_T^{i+}} e^{\phi(f_i, f_j)} + \sum\limits_{j \in B_T^{i-}} e^{\phi(f_i, f_j)}}, \\ \mathcal{L}_{sup} &= \mathbb{E}_{(x, y) \sim \mathcal{D}^s} \left[-\log[\mathcal{C}(\mathcal{G}(x))]_y \right] \end{aligned}$$

Method	Office-31	Birds-31	Digits	
Source Only	76.1	79.14	69.1	
DANN	82.2	78.44	89.29	New
CDAN	86.6	82.18	93.1	SOTA
ILA-DA (DANN)	85.54	83.63	93.83 <	results on Birds-31
ILA-DA (CDAN)	89.30	86.03	94.88	
		>		

Consistent improvements over baseline methods.

Datasets

Datasets with various domains

Office-31 3 Domains, 6 Tasks

Experimental Results

tSNE Visualization

While DANN is only successful in domain alignment, our proposed ILA-DA approach additionally improves category separation on target domain.