

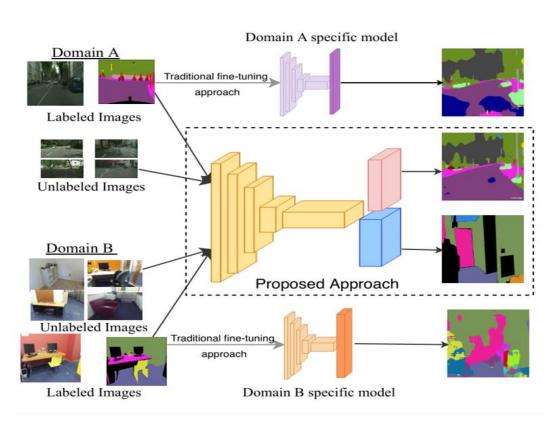
Universal Semi-Supervised Semantic Segmentation Tarun Kalluri¹, Girish Varma¹, Manmohan Chandraker², CV Jawahar¹

Overview: Universal Segmentation

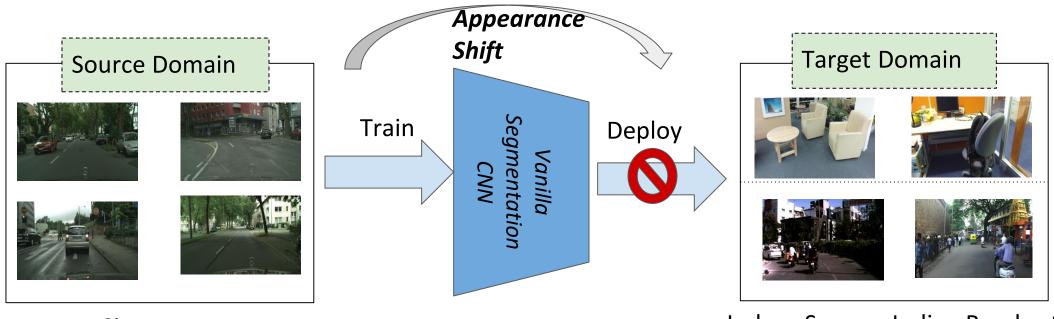
Obtain a common semantic segmentation model across widely disparate domains having limited labeled data.

A good universal model ensures that, across all domains,

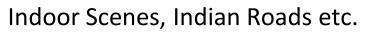
- \checkmark A single model is deployed
- \checkmark Unlabeled data is used
- \checkmark Performance is improved
- ✓ And label spaces (semantic content) may differ.



Challenge: Domain Shift + Different Labels



Cityscapes



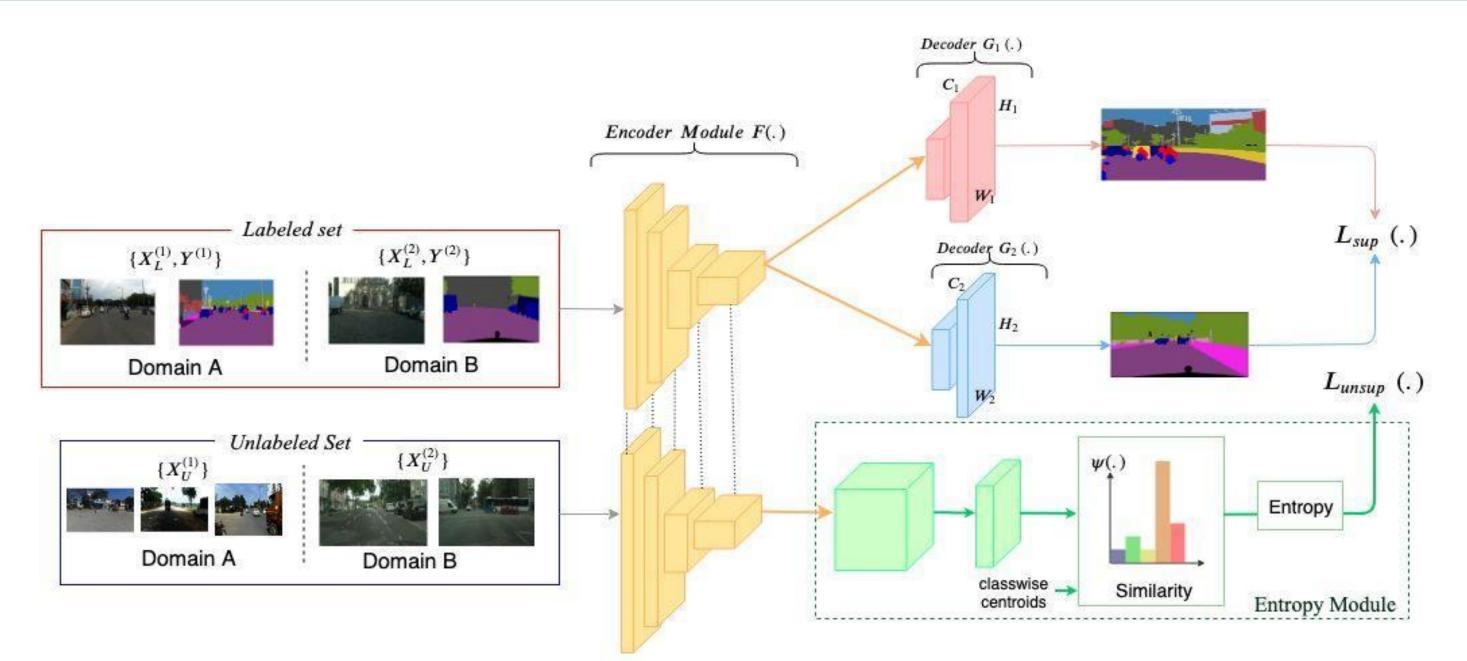
- > Models trained on a single domain are not usable in other domains due to *Domain Shift* and *Semantic Shift*.
- > Training individual models for different domains results in deployment overhead, doesn't exploit shared structure among these domains.

	Source Unlabeled Data	Target Unlabeled Data	Joint Model	Mixed Labels Support
Fine Tuning	X	X	X	✓
Semi-supervised [Hung 2018]	1	X	X	NA
CyCADA [Hoffman 2018]	×	1	\checkmark	X
Joint Training	×	×	\checkmark	1
Our Approach	✓	✓	1	1

Prior works fall short in addressing the semantic change, which we do by using large scale unsupervised images.

CVIT, IIIT Hyderabad¹ University of California San Diego²

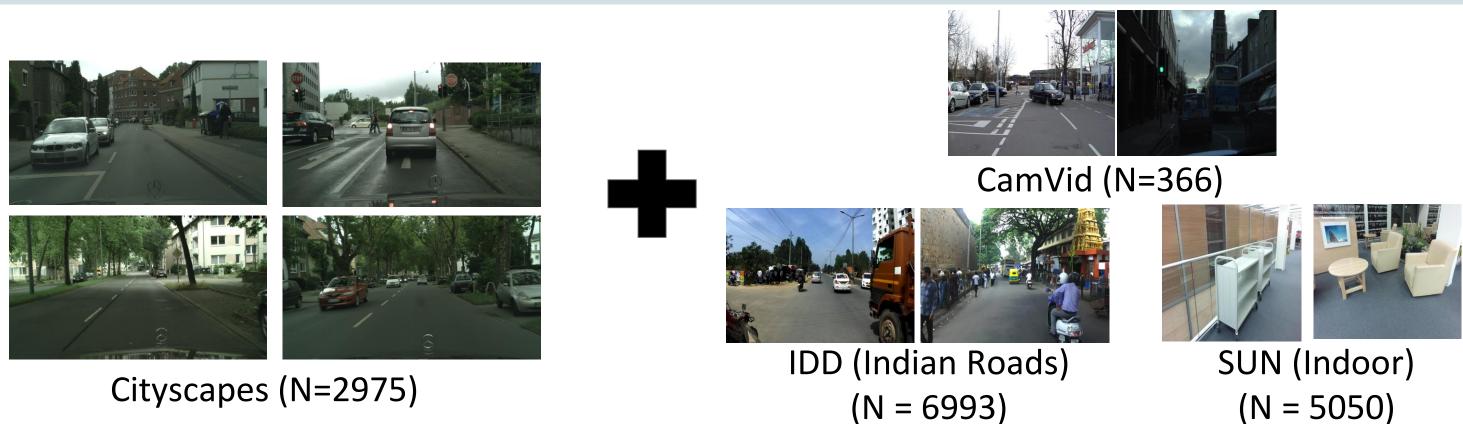
Approach: Feature Alignment Using Entropy Regularization



Training Objective: Supervised + Unsupervised Losses

$$\begin{aligned} & \textbf{Unsupervised Losses} \\ & \textbf{>} L_{u,c} = \mathcal{H}(\sigma([v_{12}])) + \mathcal{H}(\sigma([v_{21}])) \\ & \textbf{>} L_{u,w} = \mathcal{H}(\sigma([v_{11}])) + \mathcal{H}(\sigma([v_{22}])) \\ & [v_{ij}] = \phi\left(\mathcal{E}\left(\mathcal{F}\left(x_u^{(i)}\right)\right), c^{(j)}\right) \end{aligned}$$

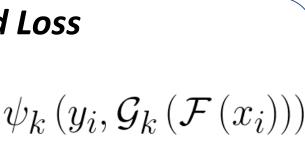
Datasets



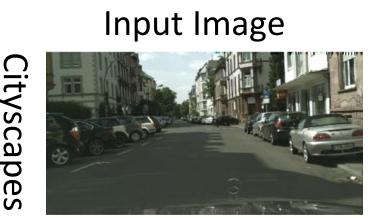
Experimental Results

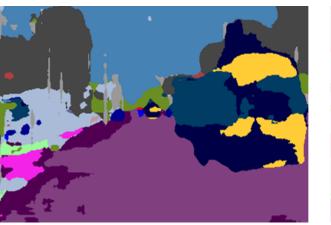
Method	N=375				N	\wedge	
method	CS	CamVid	Avg.				· ·
Train on CS	55.07	48.52	51.80			New S	OTA
Train on CVD	26.45	60.61	43.53			with s	emi
Hung et al. 2018	58.80	-	-			superv	vised <
Souly <i>et al</i> . 2017	-	58.20	-			data!	
Univ-basic (\mathcal{L}_s)	53.14	65.33	59.24		\geq	uata:	
Univ-cross (+ \mathcal{L}_c)	56.36	63.34	59.85	4		\wedge	
Univ-full (+ $\mathcal{L}_c, \mathcal{L}_w$)	55.92	64.72	60.32				•
Method		Labeled		CS	SUN	Avg.	-
		Examples					-
Train on CS		1.5k		64.23	15.47	39.85	/
Train on SUN		1.5k		15.61	42.52	29.07	
SceneNet [McCormac	2017]	Full(5.3k)		-	49.8	-	-
Univ-basic		1.5k		58.01	31.55	44.78	
Ours[Univ-full]		1.5k		57.91	43.12	50.52	
							-

Qualitative Improvements In Segmentation

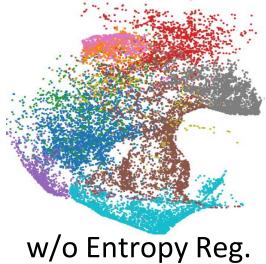


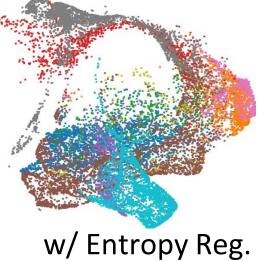
(N = 5050)





tSNE Embedding Visualization

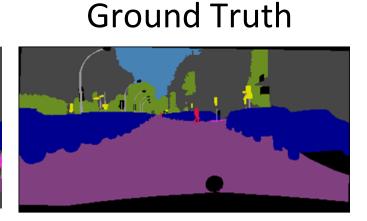




Method	N=100 (Resnet-18)			
	CS	IDD	Avg.	
Train on CS	40.97	14.64	27.81	
Train on IDD	25.05	26.53	25.79	
Univ-basic	37.94	25.21	31.58	
Univ-full	36.48	27.45	31.97	

28% labeled data from SUN RGB dataset with no synthetic examples, recovers ~88% of performance obtained with full dataset

w/ Entropy Reg





Visually similar features, like Building and SideWalk from Cityscapes and CamVid are positively aligned, helping in learning agnostic discriminative features.