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Abstract. In this work, we take a deeper look into the diverse factors
that influence the efficacy of modern unsupervised domain adaptation
(UDA) methods using a large-scale, controlled empirical study. To facili-
tate our analysis, we first develop UDA-Bench, a novel PyTorch framework
that standardizes training and evaluation for domain adaptation enabling
fair comparisons across several UDA methods. Using UDA-Bench, our
comprehensive empirical study into the impact of backbone architectures,
unlabeled data quantity, and pre-training datasets reveals that: (i) the
benefits of adaptation methods diminish with advanced backbones, (ii)
current methods underutilize unlabeled data, and (iii) pre-training data
significantly affects downstream adaptation in both supervised and self-
supervised settings. In the context of unsupervised adaptation, these
observations uncover several novel and surprising properties, while sci-
entifically validating several others that were often considered empirical
heuristics or practitioner intuitions in the absence of a standardized train-
ing and evaluation framework. The UDA-Bench framework and trained
models are publicly available.

1 Introduction

Deep neural networks for image classification often suffer from dataset bias where
accuracy significantly drops if the test-time data distribution does not match
that of training, which often happens in real-world applications. To overcome the
infeasibility of collecting labeled data from each application domain, a suite of
methods have been recently proposed under the umbrella of unsupervised domain
adaptation (UDA) [7, 9, 10, 25, 35, 36, 38, 40, 41, 43, 54, 55, 57, 84, 85, 87, 105, 109,
115,119] that allow training using only unlabeled data from the target domain of
interest while leveraging supervision from a different source domain with abundant
labels. These UDA methods have been greatly successful in improving the target
accuracy on benchmark datasets under a variety of distribution shifts [11, 71, 72,
81, 102]. While literature in the area has predominantly focused on proposing
new algorithms or loss functions, a holistic understanding of several fundamental
assumptions that influence real-world effectiveness of domain adaptation has
been lacking. In this paper, we address this through a large-scale empirical study
of three major factors that potentially influence performance the most, namely,
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Fig. 1: A summary of our contributions. We examine the effectiveness of SOTA
UDA approaches using our proposed framework UDA-Bench by revisiting the role
of backbone architectures (Fig. 1a, Sec. 4.1), unlabeled data (Fig. 1b, Sec. 4.2) and
pre-training data (Fig. 1c, Sec. 4.3) with several useful observations.

1. Choice of backbone architecture: With recent advances in architecture
designs such as vision transformers [23, 52, 95] and improved CNNs [53] we study
which architectures suit domain transfer, and verify compatibility of existing
adaptation methods with these backbones. 2. Amount of unlabeled data:
Since the promise of unsupervised adaptation rests on its potential to leverage
unlabeled target domain data, we study how much unlabeled data can really
be digested by the adaptation methods. 3. Nature of pre-training data: We
examine whether pre-training the backbone on similar data as the downstream
adaptation task is more beneficial than commonly adopted ImageNet pre-training
across several supervised and self-supervised pre-training strategies.

We believe that such insights into the behavior of UDA methods have been
previously hindered due to varying choices of adaptation-independent factors
like initialization, learning algorithm and batch sizes. To address this, we first
propose UDA-Bench, a new PyTorch framework that standardizes these factors
across multiple UDA methods and offers a unified training and evaluation plat-
form for unsupervised adaptation. Using this framework, we study various UDA
methods for image classification under different factors of variation. Among prior
works which shared similar motivations as ours [45], the absence of standardized
evaluation limits fair comparisons between UDA methods, where our distinction
lies in establishing such a framework for consistent UDA training and evaluation.
Through our analysis, we discover several new insights, while scientifically vali-
dating several phenomenon which were only considered empirical heuristics or
practitioner intuitions due to the lack of a standardized approach. These are
outlined in Fig. 1, and can be summarized as follows:

1. Recent advancements in vision transformers such as Swin [51] and DeiT [96]
exhibit superior robustness against diverse domain shifts when compared to
the conventional choice of ResNet-50 (see Tab. 1). However, incorporating
these advancements into current UDA methods tends to diminish their benefits,
leading to significant changes to the relative ranking among the methods. As
a result, older and simpler UDA methods often achieve comparable or even
superior accuracies compared to more recent methods (see Fig. 3 and Sec. 4.1).

2. Reducing the amount of unlabeled target data by up to 75% resulted in
only a 1% decrease in target accuracy across all UDA methods studied (see
Fig. 4), suggesting that that current UDA methods saturate quickly, and are
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not well-equipped to exploit the increasing availability of inexpensive unlabeled
data (see Sec. 4.2). This observation also contradicts the prevailing theory
underpinning modern UDA research proposed in Ben-David et. al. [5], which
suggests an inverse relation between the amount of unlabeled target data and
target error, highlighting the discrepency between theory and practice.

3. Pre-training data matters for downstream adaptation, but in different ways for
supervised and self-supervised pre-training. In supervised setting, pre-training
on similar data as the downstream adaptation task significantly improves the
accuracy compared to standard ImageNet pre-training (see Tab. 2).

4. In self-supervised setting, object-centric pre-training datasets enhance accuracy
for object-centric adaptation, while scene-centric pre-training datasets are
better suited for scene-centric tasks (see Tab. 3). This trend holds across
different types of pre-text tasks in self-supervised pre-training (see Sec. 4.3).

Through a comprehensive analysis using our unified training and evaluation
framework, our recommendations serve a dual purpose - enabling researchers
in identifying future opportunities for developing more effective adaptation
algorithms with fair comparisons, as well as guiding practitioners in maximizing
the benefits derived from current UDA methods. Our framework is publicly
available to continue improving our understanding of UDA methods.

2 Related Works

Unsupervised Domain Adaptation A majority of works in unsupervised
adaptation aim to minimize some notion of divergence between the source and
target domains estimated using unlabeled samples [5, 6]. Prior works studied
various divergence metrics like MMD distance [4,37,54,56,57,68,100,111], higher-
order correlations [38, 60, 89, 90] or optimal-transport [20, 22, 76], but adversarial
discriminative approaches [13, 25, 55, 85, 98–100,108] have been the most popular.
More recent works address the issue of noisy alignment with global domain
discrimination [46] using category-level [21, 24, 43, 64, 70, 73, 83, 105], instance-
level [41, 87], consistency-based [7], language-guided [40] or cross-attention [110,
119] based techniques. The primary focus of most of these works is on algorithmic
innovations to improve adaptation. Instead, our emphasis in this paper lies in
identifying several key method-agnostic factors that impact performance of UDA
methods, and conducting a comprehensive empirical study along these factors
for a better understanding of these methods. While domain adaptive semantic
segmentation is also popular [36,39,47,97,103], we restrict focus on adaptation
methods for image-classification in this paper.
Comparative Studies and Benchmarks Many recent works aim to enhance
our understanding of the factors impacting the success of state-of-the-art methods
through carefully crafted empirical analysis. A common theme in these works
is to keep the algorithm itself fixed, but study several other factors which hold
non-trivial importance in determining the performance of the algorithm. Within
computer vision, these works span the areas of semi-supervised learning [67],
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SLAM [65], metric learning [61, 79], transfer learning [59], domain generaliza-
tion [30], optimization algorithms [18], few-shot learning [15], contrastive learn-
ing [19], GANs [58], fairness [28] and self-supervised learning [27,29,66]. Prior
works also established standardized benchmarks to facilitate fair comparisons
and quick prototyping [61, 65, 93]. Our work follows suit, where we develop a
unified framework for UDA methods, and devise a controlled empirical study to
revisit several standard training choices in unsupervised adaptation.

The works closest to ours in domain adaptation are [45], which carries UDA
study but without a unified training framework, [62, 63], which study UDA
methods through fair validation methods and [44] which studies adaptation for
video segmentation. Different from these, our work lays emphasis on several other
key factors that impact adaptation such as architectures, quantity of unlabeled
data and nature of pretext data used in pre-training through design of a new
standardized evaluation framework.

3 Analysis Setup

The task of unsupervised domain adaptation (UDA) aims to improve performance
on a certain target domain with only unlabeled samples (Dt={Xt}) by leveraging
supervision from a different labeled source domain Ds={Xs, ys}. We assume
that the source images are drawn from Xs∼Ps, and target images from Xt∼Pt.
We assume a covariate shift [5] between the domains, which arises when Ps ̸=Pt,
although other forms of shift have also been studied in literature [1, 2, 26, 92].
The task of UDA is then to learn a predictive model using {Xs, Xt, ys} to
improve performance on test samples from the target domain Pt. While recent
literature focuses on novel training algorithms or loss functions to improve transfer,
this paper aims to study their effectiveness under several important but often
overlooked axes of variations pertaining to backbone architectures, unlabeled
data quantity and backbone pre-training strategies.
The Need for UDA-Bench Framework Ensuring fair comparisons between
different UDA methods necessitates controlling algorithm-independent factors
during training and inference. However, we identify a problematic practice in
most UDA methods where they are trained on different frameworks with different
choices in various training hyper-parameters and settings, making fair comparison
across these works difficult. To highlight this issue, we compute the plain source-
only accuracy using original code-bases of various UDA algorithms in Fig. 2
(the links to the open-source code for each of these methods are given in the
supplementary). Essentially, we take the open-source code base for the methods,
switch off all the adaptation losses, and train the model only on the source
dataset to compute the target accuracy. Ideally, this accuracy, which acts as
the baseline, should be the same across all the methods since it is independent
of any adaptation. In practice, however, we observe that this baseline accuracy
varies significantly between various UDA codebases, pointing to an underlying
discrepency in various training choices adopted by these works unrelated to
the adaptation algorithm itself. For example, unique to the respective methods,
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Fig. 2: Need for UDA-Bench. We illustrate the disparity between various codebases
proposed for prior UDA methods by highlighting the different accuracy numbers obtained
for a plain source only model. Computed without any adaptation, it should ideally
match across implementations which is clearly not the case. To enable fair comparisons
across UDA methods, we propose UDA-Bench, a new PyTorch framework to standardize
training and evaluation across various methods.

MDD [115] uses a deeper MLP as a classifier, MCC [38] uses batchnorm layers
in the bottleneck layer, CDAN [55] uses 10-crop evaluation and AdaMatch [7]
uses stronger augmentation on source data.

To alleviate this issue, we create a new framework in PyTorch [69] for domain
adaptation called UDA-Bench and implement several existing methods in this
framework. Our framework standardizes different UDA methods with respect to
adaptation-independent factors such as learning algorithm, network initializa-
tion and batch sizes while simultaneously allowing flexibility for incorporating
algorithm-specific hyperparameters like loss coefficients and custom data loaders
within a unified framework. All our comparisons and analyses in this paper are
implemented using this framework, while using the same adaptation-specific
hyperparameters proposed in the original papers in our re-implementation. We
also verified that our re-implementations reproduced the original accuracies when
using the hyper-parameters from the respective codebases. UDA-Bench, along
with all our implementations, is publicly released to the research community to
enable fair comparisons and fast prototyping of UDA methods in future works.
Axes of Variation We choose backbone architecture (Sec. 4.1), amount of
unlabeled data in the target (Sec. 4.2) and the nature of data/algorithm used
in pre-training the backbone (Sec. 4.3) as the different axes of variation in our
study. The deliberate focus on backbone, data size, and pre-training factors is
driven by the recognition that these factors hold the most potential to influence
deep learning training in general and UDA algorithms in particular, while also
being the most understudied in prior UDA literature. By analyzing these factors,
we seek to offer insights into salient properties of UDA and provide practical
guidance for enhancing accuracy through optimal design choices.
Adaptation Methods The selection of methods in our comparative study is not
intended to be exhaustive of all the adaptation methods proposed in the literature
thus far. Instead, we aim to provide a representative sample of works spanning a
diverse range of model families from standard to state-of-the-art, although our
inferences should readily transfer to any UDA method. In particular, the types
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of UDA methods we study include adversarial (DANN [25], CDAN [55]), non-
adversarial (MDD [115], MCC [38], DALN [14]), consistency-based (MemSAC [41],
AdaMatch [7]), alignment-based (ToAlign [105]) and pseudo-label based [119]
methods. In the supplementary, we show that the inferences made in our study
also extend to several other adaptation methods (such as BSP [17], ILADA [87],
AFN [109] and MCD [85]).
Adaptation Datasets Following popular choices in UDA literature, we use
visDA [72], OfficeHome [102], DomainNet [71] and CUB200 [104] datasets in our
analysis. VisDA studies synthetic to real transfer from 12 categories, OfficeHome
contains 65 categories across four domains, DomainNet contains images from 345
categories from 6 domains while CUB200 is designed for fine-grained adaptation.
In the supplementary, we also show results using adaptation on TinyImageNet [48]
and variants [34].
Evaluation Metrics We report results using the accuracy on the test set of
the target domain while correcting for a problematic practice in prior literature.
In most prior works using OfficeHome and CUB200 datasets, the same set of data
doubles up as the unlabeled target used in training as well as the target test set
used to report the results. To avoid possible over-fitting to target unlabeled data,
we create separate train and test sets for these datasets (using a 90%-10% ratio),
and use images from train set as labeled or unlabeled data during training and
report final numbers on the unused test images. While this could lead slightly
different numbers from those reported in the original papers, it also leads to fair
comparison with the source-only baseline.
Hyper-parameters In all our re-implementations of prior works, we use the
default hyperparameters suggested by the original methods to keep the number
of experiments manageable. Each method in the unlabeled data volume study
(Sec. 4.2) takes about 24 hours to run on an NVIDIA A10 GPU, so 8 methods,
across 4 settings, 6 data fractions and 3 random trials costs ∼14000 GPU hours.
Likewise, the experiments in Sec. 4.1 cost 18640 GPU hours and Sec. 4.3 cost
about 17356 GPU hours (including the pre-training). Incorporating experiments
to seek optimal hyperparameters for several UDA methods on top of this would
have incurred impractical levels of expenses.

4 Methodology and Evaluation

4.1 Which backbone architectures suit UDA best?

Motivation Although ResNet-50 [33] backbone is a widely adopted standard in
domain adaptation research [7, 41, 55, 83, 85, 105], several recent architectures [23,
53,95] have emerged as feasible alternatives with better performance. While a
more recent method PMTrans [119] adopts a ViT backbone, all the prior methods
were still compared using a ResNet-50 backbone. Therefore, we aim to study if the
recent advances in vision transformers confer additional benefits to cross-domain
transfer, and how ViT-specific methods [119] compare to classical methods while
using a same backbone. While robustness properties of vision transformers to
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Table 1: Comparison of domain robustness of various vision architectures on
standard adaptation datasets. We use the source accuracy (λs) and the target accuracy
(λt) of a model trained only on source data to calculate the relative drop in accuracy
(σst=100 ∗ (λs − λt)/λs, lower the better). Swin transformer shows consistently better
robustness to domain shifts on several benchmarks.

Model ResNet-50 Swin-V2-t ConvNext-t ResMLP-s DeiT3-s ResNet-50 Swin-V2-t ConvNext-t ResMLP-s DeiT3-s
#Params 24.12 M 27.86 M 28.10 M 29.82 M 21.86 M 24.12 M 27.86 M 28.10 M 29.82 M 21.86 M

DomainNet (R→C) CUB200 (CUB→Draw)

Source Accuracy (λs, ↑) 81.86 85.99 84.37 82.68 84.52 81.00 87.75 85.88 84.62 88.12
Target Accuracy (λt, ↑) 44.85 55.51 50.80 46.62 50.75 52.60 58.90 52.74 53.41 56.36
Relative Drop (σst, ↓) 45.21 35.45 39.78 43.61 39.95 35.0 32.88 38.50 36.88 36.05
Abs. Drop (λs − λt, ↓) 37.01 30.48 33.57 36.06 33.77 28.40 28.85 33.14 31.21 31.76

OfficeHome (Ar→Pr) GeoPlaces (USA→Asia)

Source Accuracy (λs, ↑) 60.10 76.17 74.72 69.69 71.76 57.17 63.11 60.39 58.99 61.65
Target Accuracy (λt, ↑) 53.33 72.56 70.77 65.90 67.18 36.12 42.53 40.30 38.11 40.34
Relative Drop (σst, ↓) 11.26 4.74 5.29 5.44 6.38 36.82 32.61 33.27 35.40 34.57
Abs. Drop (λs − λt, ↓) 6.77 3.61 3.95 3.79 4.58 21.05 20.58 20.09 20.88 21.31

adversarial and out-of-context examples have been widely studied [3, 8,86,116,
118], our analysis differs from these by focusing on the cross-domain robustness
properties of these architectures on standard UDA datasets and investigating
their potential as an improved backbone for UDA methods.
Experimental Setup Along with ResNet-50, we choose four different vision
architectures which showed great success on standard ImageNet classification
benchmarks: DeiT [95], Swin [52], ResMLP [94], and ConvNext [53]. We use
newer versions of DeiT (DeiT-III [95]) and Swin (Swin-V2 [52]) as they have
better accuracy on ImageNet. We use the variants of these architectures which
roughly have comparable number of parameters as ResNet-50, namely DeiT-small,
Swin-tiny, ResMLP-small and ConvNext-tiny. All of them are pre-trained on
ImageNet-1k, so their differences only arise from specific architectures. We use
all pre-trained checkpoints from the timm library [106] and architecture-specific
training details are provided in the supplementary.

Newer Architectures Show Better Domain Transfer For a model trained
only on source-domain data (no adaptation), we use the accuracy on the source
test-set (λs) and the accuracy on the target test-set (λt), to define relative
cross-domain accuracy drop σst=

λs−λt

λs
∗ 100. While this metric is sensitive to

the absolute value of the source accuracy (λs), we nevertheless find that it serves
as a good indicator of cross-domain robustness. Additionally, we also show the
absolute accuracy drop from source to target (λs−λt) to discount the effect of
original source accuracy. From Tab. 1, vision transformer architectures have
the least value of σst (least cross-domain drops) indicating better robustness
properties compared to CNNs or MLPs. Specifically, Swin-V2-t pre-trained on
ImageNet-1k showed least relative drop (σst) across all the datasets. Notably,
on Real→Clipart from DomainNet, using Swin backbone with plain source-only
training alone yields 55.5% accuracy, which is already higher than SOTA UDA
methods that use ResNet-50 (54.5%) [41], indicating that using an improved
backbone may have the same effect as using a complex adaptation algorithm on
the target accuracy. While the general competence of ViT-backbones is well
known, our study confirms that these improvements also extend to the case of
out-of-domain robustness. We also observe that the relative ranking of different
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(a) DomainNet (Real→Clipart) (b) visDA (Synthetic→Real)

(c) CUB200 (CUB→Drawing) (d) OfficeHome (Art→Product)

Fig. 3: Better backbones diminish gains from UDA. For each UDA method, we
show the gain in accuracy relative to a baseline trained only using source-data. Across
datasets, we observe that benefits offered by UDA approaches over the baseline diminish
with backbones that have improved domain-robustness properties.

architectures widely varies across datasets, highlighting that the type of domain
transfer influences domain robustness.
UDA Gains Diminish With Newer Architectures We next ask the
question if these benefits are complementary to the UDA method itself, and
explore the viability of incorporating these advanced architectures into existing
UDA methods. From Fig. 3, we observe that most methods do yield complimentary
benefits over a source-only trained baseline even with newer architectures, but
the relative improvement offered by UDA methods over this baseline tends to
diminish when using better backbones. Looking at the relative gain in accuracy
over a source-only baseline, on Real→Clipart in Fig. 3a, the best adaptation
method provides 20% relative gain over the baseline using ResNet-50, which
falls to just 7% with Swin and 10% with DeiT backbone. Similarly, the relative
gains offered by best UDA methods fall from 18% with ResNet-50 to 8% using
Swin on Art→Product in Fig. 3d. These observation also holds for visDA Fig. 3b
and CUB200 Fig. 3c datasets. The trends using the absolute accuracy drop also
remain the same, while the relative drop further accounts for the strong source
domain accuracy using advanced backbones. These results seem to suggest that
the impact of many UDA methods is not really independent of the backbone
used, and often tends to diminish in presence of better backbones which have
better domain robustness properties. Furthermore, the relative ranking of the best
adaptation method and backbone changes across datasets, and is not consistent.
For example, an older and simpler method like CDAN gives best accuracies in
Fig. 3a with Swin, ConvNext and DeiT, while MCC outperforms other methods
with a ResMLP backbone. We also show the more results on DomainNet and
OfficeHome in supplementary, and the results follow similar trends, where one of
the more recent architectures significantly diminishes the returns yielded by all
UDA methods.
Difference From Prior Works While prior works like [45] only show
this trend for classical UDA methods [55, 85] without using a standardized
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framework, we additionally show that this issue extends to more recent state-
of-the-art UDA algorithms [14,41,105] as well, including methods using vision
transformer backbones [119] using the proposed UDA-Bench, yielding several
novel observations. For instance, we show in Fig. 3 that the current SOTA method
PMTrans [119] performs worse than DALN on CUB200 and CDAN on DomainNet
when all of them use the same DeiT backbone, highlighting the key need to
standardize backbones and architectures before comparing different methods.

4.2 How much unlabeled data can UDA methods use?

Motivation Although UDA holds great potential in leveraging unlabeled data
from a target domain to enhance performance, an insight into their scalability
properties in relation to the quantity of unlabeled data is lacking. These scaling
properties are important to inform us which method has the greatest potential to
improve performance when more unlabeled data becomes accessible, motivating
us to study how much unlabeled data do UDA methods actually consume.
Experimental Setup To study the effects of data volume, we sample {1, 5,
10, 25, 50, 100}% of the data from the target domain and run the adaptation
algorithm using each of these subsets as the unlabeled data. We repeat the
experiment with three different seeds in each case and report the mean accuracy
to eliminate sampling bias. To avoid tail effects, we perform stratified sampling
so that the label distribution is constant across all the subsets. Specifically, we
sample x% of data from each category individually which helps to preserve the
tail properties of the resulting sub-sampled dataset. We also make sure that all
categories have at least 1 image in the sub-sampled dataset. Note that the label
information in the target is used only during sampling, but not during training.
We note the possibility of hyper-parameter sensitivity to the amount of target
unlabeled data, but do not preform any additional tuning to keep the number
of experiments manageable. We restrict to using DomainNet and VisDA in our
analysis as those are the largest available datasets for domain adaptation, and
show results using another recent large-scale adaptation benchmark GeoNet in
the supplementary. The already tiny data volume in OfficeHome and CUB200
prevents their use in a scalability study like this.
UDA Accuracy Does Not Increase With More Unlabeled Data. Re-
markably the trends from Fig. 4 indicate that on all the settings the accuracy
achieved by the unsupervised adaptation saturates rather quickly with respect to
the unlabeled data. This trend holds for almost all of the studied adaptation meth-
ods, including adversarial [55], non-adversarial [7], consistency based [41] and
pseudo-label based [119] methods. The gains remain less than 2% in most cases
even when scaling unlabeled data four-fold (from 25% to 100%). For example, on
R→C (Fig. 4a), the accuracy achieved at using just 25% of the unlabeled data
is within 1% of the accuracy obtained at 100% of the data using any adapta-
tion method. In P→R, (Fig. 4b) the accuracy plateaus much earlier, at around
10 − 15% of the unlabeled data. Similar results are observed using a different
backbone like DeiT with a purely transformer-based method PMTrans [119]
(Fig. 4d), where the performance saturates after using only 10% of the unlabeled
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(a) Real→Clipart (Resnet-50) (b) Painting→Real (Resnet-50)

(c) Real→Clipart (ConvNext-t) (d) VisDA (DeiT)

Fig. 4: How much unlabeled data can UDA methods use? Across different
adaptation datasets and backbones (Resnet50 in a, b, ConvNext in c and DeiT in d),
we find that the performance of several UDA methods saturates quickly with respect
to amount of target data, showing their limited efficiency in utilizing the unlabeled
samples. In most cases, using only 25% of the data results in < 1% drop in accuracy.

data. These results suggest that even in cases where abundant unlabeled data
becomes available, current UDA methods cannot leverage the potential benefits
of this data to enhance performance. We also show more results on DomainNet
in supplementary, where the observations follow similar trends.

Furthermore, we juxtapose this observation with a similar ablation using
source labeled data in the supplementary, and identify that source supervision
has a more pronounced effect on the target accuracy than target unlabeled data.
Specifically, increasing source labeled data from 50% to 100% results in upto
10% gain in target accuracy (as opposed to < 1% observed using similar scale
increase in target unlabeled data).

Investigating Poor Data Efficiency of UDA Methods We hypothesize
that the main reason behind poor unlabeled sample efficiency is the underlying
adaptation objective employed, which fails to effectively utilize growing amounts
of unlabeled data. As an example, we take the objective of domain classification,
which forms the backbone of several adversarial UDA methods [25, 55], and
examine its data efficiency. We plot the accuracy of the domain discrimination
objective itself against the quantity of unlabeled samples in Fig. 5a for different
settings from DomainNet. We notice that the domain classification accuracy
reaches a plateau after using approximately 25% of the data, potentially explaining
the saturation of the adaptation accuracy in methods that rely on this objective
for bridging the domain gap. While this explains adversarial alignment based
methods, we posit that similar limitations impact other types of adaptation
approaches including self-training, pseudo-label or consistency-based methods.
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(a) Accuracy Saturation (b) Random Sampling (c) Class-split Sampling

Fig. 5: (a)Saturation of the domain classification accuracy is observed even with
small amount of unlabeled data, potentially explaining the poor sample efficiency of
UDA methods employing adversarial domain alignment. (b,c) Role of the sampling
technique adopted We study the behavior of UDA methods with respect to target
unlabeled data using two additional sampling techniques: random sampling in (b) and
split-class sampling in (c). Our observation that UDA methods under-utilize unlabeled
data holds for both of these cases as well.

UDA Empirical Data Efficiency Does Not Match Theory. The above
observation stands in stark contrast to the theoretical framework of domain
adaptation established by Ben-David et al. [5], which underpins several UDA
methods. Their theoretical analysis suggests an inverse relationship between
target sample size and target error (Theorem 2 from [5]), further highlighting the
importance of empirical study like ours using a unified framework like UDA-Bench
to understand the bridge between theory and practice. Our observation from
UDA is also different from prior scalability studies in supervised [91], weakly-
supervised [88] and self-supervised learning [29] literature, where increasing
labeled or unlabeled data significantly enhances performance.

Similar Results Hold For Other Sampling Techniques In addition
to the class-balanced sampling procedure in Fig. 4, we also show results using
two other sampling techniques, random sampling and split-class sampling in
Fig. 5b and Fig. 5c respectively. In Fig. 5b, we randomly select x% of images
from the whole dataset without any class-aware sampling, and show the general
observation that UDA methods reach a performance plateau after utilizing a
limited amount of unlabeled data holds, where using only 50% of the unlabeled
data resulted no drop in performance for most of the methods. In Fig. 5c, we
adopt a split-class sampling technique, where we first randomly select half the
classes, and remove 2x% of data from these classes while keeping images from the
rest of the classes the same. This sampling technique would reveal insights into
scenarios where the tail properties of the category distribution exhibit significant
skewness, and adding unlabeled data translates to correcting the skewed tail
property of the dataset. However, the gains yielded from adding more unlabeled
data is still limited. Even when the overall trends look positive with non-saturated
performance, the absolute gain is still less than 2% while doubling the amount
of unlabeled data from 50% to 100%, matching the observations made with other
sampling techniques.
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Table 2: In-task Supervised pre-training helps domain adaptation. We ana-
lyze the relationship between data used for supervised pre-training and downstream
adaptation for source-only transfer as well as several UDA methods including Mem-
SAC [41], ToAlign [105], MDD [115] and DALN [14]. We show that in-task super-
vised pre-training significantly helps adaptation. All models use ResNet-50 backbone.
IN:ImageNet, PL:Places-205, NAT:iNaturalist.

Plain Transfer (no adapt) ToAlign [105] MemSAC [41] MDD [115] DALN [14]

Pre-training DNet GeoP CUB DNet GeoP CUB DNet GeoP CUB DNet GeoP CUB DNet GeoP CUB

IN-1M 41.46 34.55 50.20 49.29 30.42 62.78 50.75 32.98 62.92 42.40 30.84 59.84 47.59 26.85 61.45
PL-1M 35.14 41.95 40.83 38.55 34.9 55.29 41.93 40.16 54.22 34.94 37.90 51.14 39.21 36.23 50.74

NAT-1M 33.77 31.53 58.77 37.65 26.81 67.47 38.67 29.99 67.34 32.29 26.79 63.72 37.30 24.69 66.80

4.3 Does pre-training data matter in UDA?

Motivation Following recent works that reveal the importance of pre-training
data in influencing downstream accuracy [19], we revisit a standard practice in
UDA to adopt ImageNet pre-trained backbone irrespective of the downstream
adaptation task. While Kim et al. [45] share similar motivations as ours, a notable
distinction lies in their focus on scaling pre-training data and architectures, while
we offer complementary insights by exploring the relationship between the type
of pre-training and downstream adaptation maintaining a constant datasize.
Experimental Setup We use ImageNet [80], Places-205 [117] and iNaturalist-
2021 [101] as datasets during pre-training. While ImageNet contains images
from diverse natural and object categories, Places-205 is designed for scene
classification and iNaturalist contains images of bird species. We select 1M
images each from ImageNet, Places-205 and iNaturalist datasets (indicated as
IN-1M, PL-1M and NAT-1M respectively) to keep the size of the pre-training
datasets constant, allowing us to decouple the impact of nature of data from
the volume of the dataset. In terms of pre-training methods, we use supervised
pre-training using labeled data, along with recent state-of-the-art self-supervised
methods SwAV [12], MoCo-V3 [16] and MAE [32], which broadly cover the
three families of clustering, contrastive and masked auto-encoding based methods
for self-supervised learning. We train SwAV on ResNet-50, MoCo on ViT-S/16
and MAE on ViT-B/16 architectures, along with supervised pre-training on
ResNet-50, thereby extending our inferences to a diverse pool of pretraining data
and architectures. For the downstream adaptation tasks, we use Real→Clipart on
DomainNet, CUB→Drawing on CUB200 and USA→Asia on GeoPlaces covering
three distinct application scenarios for adaptation on objects, birds and scenes
respectively. To prevent overlap between pre-training and adaptation data, we
remove images from Places-205 that are also present in GeoPlaces and remove
images from iNaturalist that belong to the same class as those in CUB200.
Supervised Pre-training Using In-Task Data Helps UDA In our analysis,
we loosely consider pre-training on ImageNet, iNaturalist and Places205 to be
in-task pre-training for downstream adaptation on DomainNet, CUB200 and
GeoPlaces respectively due to the matching style of images. We show our results
using supervised pre-training on Resnet-50 in Tab. 2 for plain source-only transfer
(no adaptation), as well as adaptation using ToAlign, MemSAC, MDD and DALN.
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Table 3: Self-supervised pre-training and domain adaptation. We find that
self-supervised pre-training on object-centric images (on ImageNet) help downstream
accuracy on object-centric adaptation (on DomainNet and CUB200), while scene-
centric pre-training (on Places205) benefit adaptation on scene-centric GeoPlaces task.
IN:ImageNet, PL:Places-205, NAT:iNaturalist

SwAV (ResNet50) [12] MoCo-V3 (ViT-s/16) [16] MAE (ViT-b/16) [32]

Pretraining DNet GeoP CUB DNet GeoP CUB DNet GeoP CUB

IN-1M 36.51 35.76 31.59 30.48 31.13 40.7 38.58 35.85 52.34
PL-1M 30.86 42.26 27.44 27.45 35.89 39.49 34.76 38.1 45.25
NAT-1M 28.01 29.01 30.12 25.66 27.82 40.03 33.78 31.68 49.4

(a) Plain Transfer (No Adaptation)

SwAV (ResNet50) [12] MoCo-V3 (ViT-s/16) [16] MAE (ViT-b/16) [32]

Pretraining DNet GeoP CUB DNet GeoP CUB DNet GeoP CUB

IN-1M 44.6 36.33 51.81 34.33 30.35 52.61 44.91 34.07 64.26
PL-1M 36.48 41.14 39.49 30.83 35.51 46.99 39.56 37.00 53.68
NAT-1M 31.6 28.75 45.65 28.24 26.01 48.46 38.48 28.74 59.7

(b) Using MemSAC Adaptation

Across the board, we observe that in-task pre-training always yields better results
on downstream adaptation even when using the same amount of data. Focusing
on plain transfer from Tab. 2, the de-facto choice of ImageNet pre-training gives
50.2% on CUB→Drawing transfer task, while just switching the pre-training
dataset to iNaturalist2021 yields 58.7% accuracy with an absolute improvement of
8.5%. Likewise, we observe a non-trivial improvement of 7.4% absolute accuracy
for GeoPlaces (34.5% to 41.9%) using Places205 for pre-training even without any
adaptation, challenging the common assumption of using an ImageNet-pretrained
model irrespective of the downstream task. We hypothesize that supervised
pre-training on in-task data creates strong priors with more relevant features,
thereby enhancing generalization on similar downstream tasks. Consequently, we
conclude that selecting in-task pre-trained models is a viable approach to improve
accuracy, particularly when target unlabeled data is unavailable. While similar
observations have been made before in continual pre-training [77] or language
models [31], our difference lies in highlighting this behavior for the specific case
of UDA through a unified framework and controlled empirical study.

In-Task Pre-training is complementary to UDA method We also observe
that these benefits obtained from in-task supervised pre-training complement
the advantages potentially obtained using UDA methods, resulting in additional
improvements in accuracy. From Tab. 2, on CUB200, we observe 17.1% and
17.3% improvement using MemSAC and ToAlign respectively together with
in-task pre-training, over standard practice of ImageNet-pretraining and fine-
tuning on source data (12% from changing the backbone and further 5% from
the adaptation), setting a new state-of-the-art on CUB200 dataset using in-
task pre-training. On the other hand, a significant mismatch between the pre-
training dataset and the downstream domain adaptation dataset (such as Places
and Birds datasets), noticeably reduces the accuracy by >10% in most cases,
underlining the dependence of model’s generalization ability to the pre-training
data. While these findings may seem intuitive, it is important to note that all UDA
methods consistently utilize ImageNet pre-training as the default, irrespective
of the adaptation dataset. This may lead to practitioners assuming ImageNet
pre-training as the optimal choice, potentially overlooking performance gains
achievable by employing alternative pre-trained models tailored to the target
task, as demonstrated by our empirical study.
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Nature of Pre-training Images matter for Self-supervised Learning We
show results for self-supervised setting in Tab. 3. We first note that supervised pre-
training (Tab. 2) achieves much higher accuracies after downstream adaptation
compared to self-supervised pre-training. This is expected, as supervised pre-
training captures richer object semantics through labels inherently benefiting
any downstream task, while self-supervised learning relies on pretext tasks that
may not impart equivalent semantic understanding. In terms of pre-training
data, we observe that both CUB200 and DomainNet benefit from self-supervised
pre-training on ImageNet, while GeoPlaces still benefits from pre-training on
Places205. This observation holds for both source-only transfer (Tab. 3a) as well
as adaptation using MemSAC (Tab. 3b). We posit that in a self-supervised setting,
the nature of images in the datasets (whether object-centric or scene-centric)
plays a crucial role in downstream transfer. Specifically, unsupervised pre-training
on object-centric images from ImageNet leads to improved image classification
accuracies on DomainNet and CUB200. Conversely, unsupervised pre-training on
scene-centric Places205 showcase better transfer performance in place recognition
tasks on the GeoPlaces dataset. Among the two object-centric datasets, we find
that the diversity of images in ImageNet is better for effective transfer compared
to specific domain-based datasets like iNaturalist, as also highlighted in prior
works for self-supervised learning [19]. Furthermore, this property is consistent
across different kinds of self-supervised pretext tasks like SwAV, MoCo and MAE.

5 Conclusion

In this work, we provide a holistic analysis of factors that impact the effectiveness
UDA methods developed for image-classification, most of which are not apparent
from standard training and evaluation practices. Through our innovation called
UDA-bench that facilitates fair comparisons across UDA methods, we perform
a controlled empirical study revealing key insights regarding the sensitivity of
these methods to the backbone architecture, their limited efficiency in utilizing
unlabeled data, and the potential for enhancing performance through in-task
pre-training - where existing UDA theory proves highly inadequate for explaining
several of our novel empirical observations. In terms of limitations of the study, we
only consider UDA designed for classification in this work, and our findings might
or might not hold for other problem areas such as domain adaptive semantic
segmentation. We also acknowledge the potential existence of other unexplored
factors that may impact the performance of UDA methods beyond those studied
here, and offer UDA-Bench as a suitable avenue for future research in this direction.
Further, we mainly focus on the standard setting in unsupervised adaptation, but
believe that a deeper understanding of algorithms in such conventional settings
forms the backbone for future studies in other variants including source-free [49],
semi-supervised [82] and universal [112] DA methods. Several other avenues
like adaptation of vision-language models [74, 113] and emerging generative
models [50,78] are also left to a future work.
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(a) DomainNet (b) OfficeHome

Fig. 6: Effect of backbone. For each of the UDA methods, we show the gain in
accuracy relative to a baseline trained only using source-data for (a) DomainNet and
(b) OfficeHome datasets.

A UDABench: Code Overview

We build our codebase using PyTorch following several open-source deep-learning
libraries like Detectron [107] and PyTorch3D [75]. The overarching motivation
in designing UDA-Bench is to standardize evaluation and training of existing
unsupervised adaptation methods to facilitate fair comparative studies like ours,
while also enabling quick prototyping and design of new adaptation methods in
the future. UDA-Bench is designed to be flexible to incorporate newer architecture
backbones, classifier modules, optimizers, loss functions, dataloaders and training
methods with minimal effort and design overhead, allowing researchers to build
upon existing adaptation methods to develop new innovations in unsupervised
adaptation.

We re-implement several classical as well as state-of-the-art UDA methods
in UDA-Bench. We keep the adaptation independent hyper-parameters (such
as architectures, batch sizes) same across the methods, and use the adaptation-
specific hyper-parameters as recommended in the respective methods. We use
the open-source repositories of prior UDA methods from the links given below.

– CDAN: https://github.com/thuml/CDAN/tree/master
– MCC: https://github.com/thuml/Versatile-Domain-Adaptation
– MDD: https://github.com/thuml/MDD
– ToAlign: https://github.com/microsoft/UDA
– MemSAC: https://github.com/ViLab-UCSD/MemSAC_ECCV2022
– AdaMatch: https://github.com/google-research/adamatch
– DALN: https://github.com/xiaoachen98/DALN
– PMTrans: https://github.com/JinjingZhu/PMTrans

B Additional Results on DomainNet and OfficeHome

Effect of Backbone Architecture We examine the effect caused due to back-
bone on further settings from the DomainNet dataset in Fig. 6a and OfficeHome
in Fig. 6b, where we show the target accuracy on each dataset. We observe same
trends as discussed in main paper with more focused transfer settings, with vision
transformer architecture like Swin and Deit diminishing the benefits of most
UDA methods, that otherwise yield good gains with Resnet-50 as the backbone.

https://github.com/thuml/CDAN/tree/master
https://github.com/thuml/Versatile-Domain-Adaptation
https://github.com/thuml/MDD
https://github.com/microsoft/UDA
https://github.com/ViLab-UCSD/MemSAC_ECCV2022
https://github.com/google-research/adamatch
https://github.com/xiaoachen98/DALN
https://github.com/JinjingZhu/PMTrans
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(a) DomainNet (b) GeoPlaces (USA→Asia)

Fig. 7: Effect of unlabeled data We show the effect of target unlabeled data on
the target accuracy on - (a) DomainNet and (b) GeoPlaces using a DeiT Backbone.
The trends remain similar, where we observe that most UDA methods under-utilize
unlabeled data.

(a) DomainNet (b) visDA (c) CUB200 (d) OfficeHome

Fig. 8: Newer backbones give limited returns or perform worse than baseline.
For each of the UDA methods, we show the gain in accuracy relative to a baseline
trained only using source-data. For methods like SAFN [109] and MCD [85], we observe
that the relative improvement over a source-only baseline is negative in most cases.
Further, the gains observed by other methods like BSP [17] and ILADA [87] are not
same across architectures.

Amount of Unlabeled Data As demonstrated in main paper, current UDA
methods under-utilize unlabeled data, and the performance saturates even when
more unlabeled data is accessible to the algorithms. We examine this trend
for other settings in DomainNet dataset as well, and show the results from
DomainNet in Fig. 7 using a DeiT backbone. We use a DeiT backbone for this
comprehensive experiment since it converges faster and hence needs lesser GPU
hours during training. We also show the scaling trends for adaptation another
completely different kind of dataset GeoPlaces [42] in Fig. 7b, where we observe
that unlabeled data rarely helps, even hurting the adaptation accuracy in some
cases.

C Results Using Additional UDA Methods

In addition to the wide variety of UDA methods studied in our main paper, we
show results using four additional adaptation methods: BSP [17], ILADA [87],
SAFN [109] and MCD [85]. The observations for the effect of backbone architecture
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(a) DomainNet (b) VisDA

Fig. 9: Unlabeled Data-efficiency of UDA algorithms Across both DomainNet
and visDA datasets, the performance of UDA methods exhibits diminishing returns
with increasing amounts of unlabeled data. In most cases, utilizing only 25% of the
available unlabeled data results in a performance drop of less than 1%, suggesting that
collecting additional unlabeled data is unlikely to yield significant improvements for
these methods.

is presented in Fig. 8 and the study for the effect of unlabeled target domain
data is presented in Fig. 9.
UDA methods are not always compatible with newer backbones. Res-
onating with the observations made in the main paper, we show in Fig. 8 that
the gains obtained by UDA method are not independent of the backbone. For
instance, on CUB200 dataset, BSP [17] and ILADA [87] gives 20% and 15%
relative gain respectively, but using DeiT diminishes these gains to 12% and
3% respectively. Similarly, on visDA, the improvements using ResNet is much
higher than improvements offered on other backbones like ConvNext and DeiT.
Moreover, as demonstrated in previous research [41], other unsupervised domain
adaptation (UDA) algorithms, such as SAFN [109] and MCD [85], under-perform
compared to a source-only baseline, and the disparity worsens when employing
these algorithms with newer architectures.
Adding More Unlabeled Data is Not Beneficial for UDA From Fig. 9, the
performance of the additional adaptation methods studied also plateaus quickly,
reaching near saturation after utilizing only 20% of the available unlabeled data.
Further addition of unlabeled data yields negligible performance gains. This
suggests that collecting additional unlabeled data is unlikely to yield significant
improvements for these methods, corroborating the observations noted in the
main paper for several other UDA methods.

D Source Labeled vs. Target Unlabeled Data

In the main paper, we showed that volume of target data has minimal effect on the
target accuracy after a certain point. To compare this with the importance held
by source labels in determining the target accuracy, we conduct an experiment
by using subsets of source labeled data, while using the full target unlabeled
data each time. Specifically, we use {1, 5, 10, 25, 50, 100}% of source labels and
train the UDA methods on each subset. We run three random seeds and plot the
mean accuracy in Fig. 10. We observe that the scaling trends of target accuracy



26 T. Kalluri et al.

(a) Source Labeled Data (b) Target Unlabeled Data

Fig. 10: Source labels vs. Target unsupervised data We show that collecting more
labels from source dataset, even when it is from a different domain, has a more profound
influence on the target accuracy (a) compared to collecting more unlabeled data from
the target domain using current UDA methods (b). Results shown on Real→Clipart
setting from DomainNet dataset.

(a) Varying backbones (b) Varying target unlabeled data

Fig. 11: Results on TinyImageNet vs. TinyImageNet-C We show the similar
observations regarding backbone architectures and data volume hold also for a non-
standard adaptation dataset. We use images from TinyImageNet as the source and
snow-3 perturbations from TinyImageNet-C as the target.

with respect to source labeled data are much more favorable towards improving
performance. For example, doubling the number of source labels from 50% to
100% improves target accuracy by ∼ 9% on average across UDA methods. In
contrast, the improvement in doubling the target unlabeled data from 50% to
100% is less than 0.5% on average. This confirms the fact that labels have a more
pronounced impact on target accuracy even when they arise from a different
domain, compared to unlabeled data from the same domain.

E Results using TinyImageNet

To further examine the presented trends on non-standard adaptation datasets, we
show results using images from the TinyImageNet dataset as the source domain
and snow perturbations from TinyImageNet-C [34] as the target domain. We
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train models using the 200 classes in each dataset, and use report accuracy
on the target domain. In Fig. 11, we show that the broad trends observed for
other adaptation datasets also hold for this novel setting. Specifically, from a,
adaptation gains are much lesser with recent architectures (like ConvNext and
DeiT ) and from b, performance saturates in-spite of adding unlabeled data,
further corroborating the main inferences from our study.

F Training Details

Architecture-specific training details In our ablation on benchmarking
UDA across architectures, we use all pre-trained checkpoints from the timm
library, and all of them are pre-trained on ImageNet-1k. Across the architectures,
we uniformly use a batch size of 32, SGD optimizer with an initial learning rate
of 0.003 and cosine decay. It might be possible that ViT models benefit from
other algorithms such as Adam [114], which we do not explore in this paper.
For data augmentation, we first resize the images so that the shorter size is 256
and then choose a random 224 × 224 crop followed by random horizontal flip.
However, we use a crop size of 256 instead of 224 for Swin transformer due to its
input size. We train the networks for a total of 75k iterations on DomainNet and
CUB200 with validation performed at every 5k steps, and for 30k iterations on
the smaller OfficeHome dataset with validation at every 500 steps. We use early
stopping on the test set to choose the best accuracy.

For the classifier, we use a 2-layer MLP with a hidden dimension of 256. The
input dimension for the MLP, though, varies depending on the output dimension
of the backbone architecture used. For Resnet-50, it is 2048, for Swin-t and
ConvNext-t it is 768 and for Deit-s and ResMLP-s it is 384.

F.1 Unsupervised Pre-Training Network Details

We use the official repositories for SwAV, MoCo-v3, MAE to pre-train the
models on our datasets. Note that we subsample an image set of 1M images
from ImageNet, Places205 and iNat2021 to normalize the effects of data volume,
using a per-class sampling strategy. We use the official repositories for Swav,
MoCo-V3 and MAE, and use the code for supervised pre-training from PyTorch.
We train Swav for 150 epochs, MoCo-v3 for 250 epochs, MAE for 400 epochs
and supervised pre-training for 90 epochs. The training for all the methods is
performed on 8 GPUs with a total batch size of 1024 in each case. For all other
hyperparameters, we follow the ones recommended in the respective repositories.

https://github.com/pytorch/examples/tree/main/imagenet
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