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Abstract

In recent years, several efforts have been aimed at im-
proving the robustness of vision models to domains and
environments unseen during training. An important practi-
cal problem pertains to models deployed in a new geography
that is under-represented in the training dataset, posing
a direct challenge to fair and inclusive computer vision.
In this paper, we study the problem of geographic robust-
ness and make three main contributions. First, we intro-
duce a large-scale dataset GeoNet for geographic adapta-
tion containing benchmarks across diverse tasks like scene
recognition (GeoPlaces), image classification (GeoImNet)
and universal adaptation (GeoUniDA). Second, we inves-
tigate the nature of distribution shifts typical to the prob-
lem of geographic adaptation and hypothesize that the ma-
jor source of domain shifts arise from significant varia-
tions in scene context (context shift), object design (de-
sign shift) and label distribution (prior shift) across ge-
ographies. Third, we conduct an extensive evaluation of
several state-of-the-art unsupervised domain adaptation al-
gorithms and architectures on GeoNet, showing that they do
not suffice for geographical adaptation, and that large-scale
pre-training using large vision models also does not lead to
geographic robustness. Our dataset is publicly available at
https://tarun005.github.io/GeoNet.

1. Introduction
In recent years, domain adaptation has emerged as an

effective technique to alleviate dataset bias [80] during train-
ing and improve transferability of vision models to sparsely
labeled target domains [27, 36, 40, 42, 49–51, 68, 69, 87, 90].
While being greatly instrumental in driving research forward,
methods and benchmark datasets developed for domain adap-
tation [56, 57, 64, 84] have been restricted to a narrow set of
divergences between domains. However, the geographic ori-
gin of data remains a significant source of bias, attributable to
several factors of variation between train and test data. Train-
ing on geographically biased datasets may cause a model
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(c) Large vision models exhibit cross-domain drops on GeoNet

Figure 1. Summary of our contributions. (a): Training computer
vision models on geographically biased datasets suffers from poor gener-
alization to new geographies. We propose a new dataset called GeoNet to
study this problem and take a closer look at the various types of domain
shifts induced by geographic variations. (b) Prior unsupervised adapta-
tion methods that efficiently handle other variations do not suffice for
improving geographic transfer. (c) We highlight the limitations of mod-
ern convolutional and transformer architectures in addressing geographic
bias, exemplified here by USA→Asia transfer on GeoImNet.

to learn the idiosyncrasies of their geographies, preventing
generalization to novel domains with significantly different
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geographic and demographic composition. Besides robust-
ness, this may have deep impact towards fair and inclusive
computer vision, as most modern benchmark datasets like
ImageNet [63] and COCO [47] suffer from a significant US
or UK-centric bias in data [24, 73], with poor representation
of images from various other geographies like Asia.

In this paper, we study the problem of geographic
adaptation by introducing a new large-scale dataset called
GeoNet, which constitutes three benchmarks – GeoPlaces
for scene classification, GeoImNet for object recognition and
GeoUniDA for universal domain adaptation. These bench-
marks contain images from USA and Asia, which are two
distinct geographical domains separated by various cultural,
economic, demographic and climatic factors. We addition-
ally provide rich metadata associated with each image, such
as GPS location, captions and hashtags, to facilitate algo-
rithms that leverage multimodal supervision.

GeoNet captures the multitude of novel challenges posed
by varying image and label distributions across geographies.
We analyze GeoNet through new sources of domain shift
caused by geographic disparity, namely (i) context shift,
where the appearance and composition of the background in
images changes significantly across geographies, (ii) design
shift, where the design and make of various objects changes
across geographies, and (iii) prior shift, caused by different
per-category distributions of images in both domains. We
illustrate examples of performance drop caused by these fac-
tors in Fig. 1a, where models trained on images from USA
fail to classify common categories such as running track and
mailbox due to context and design shifts, respectively.

GeoNet is an order of magnitude larger than previous
datasets for geographic adaptation [58, 61], allowing the
training of modern deep domain adaptation methods. Im-
portantly, it allows comparative analysis of new challenges
posed by geographic shifts for algorithms developed on other
popular adaptation benchmarks [56, 57, 64, 84]. Specifically,
we evaluate the performance of several state-of-the-art un-
supervised domain adaptation algorithms on GeoNet, and
show their limitations in bridging domain gaps caused by
geographic disparities. As illustrated in Fig. 1b for the case
of DomainNet [56] vs. GeoNet, state-of-the-art models on
DomainNet often lead to accuracies even worse than a source
only baseline on GeoNet, resulting in negative relative gain
in accuracy (defined as the gain obtained by an adaptation
method over a source-only model as a percentage of gap be-
tween a source-only model and the target-supervised upper
bound). Furthermore, we also conduct a study of modern ar-
chitectures like vision transformers and various pre-training
strategies, to conclude that larger models with supervised
and self-supervised pre-training offer improvements in accu-
racy, which however are not sufficient to address the domain
gap (Fig. 1c). This highlights that the new challenges intro-
duced by geographic bias such as context and design shift are

relatively under-explored, where our dataset may motivate
further research towards this important problem.

In summary, our contribution towards geographic domain
adaptation is four-fold:

• A new large-scale dataset, GeoNet, with benchmarks for
diverse tasks like scene classification and object recogni-
tion, with labeled images collected from geographically
distant locations across hundreds of categories (Sec. 3).

• Analysis of domain shifts in geographic adaptation,
which may be more complex and subtle than style or
appearance variations (Sec. 3.4).

• Extensive benchmarking of unsupervised adaptation al-
gorithms, highlighting their limitations in addressing
geographic shifts (Sec. 4.2).

• Demonstration that large-scale pretraining and recent
advances like vision transformers do not alleviate these
geographic disparities (Sec. 4.3).

2. Related Works

Domain Adaptation Unsupervised domain adaptation en-
ables training models on a labeled source domain along with
unlabeled samples from a different target domain to improve
the target domain accuracy. A large body of prior works aim
to minimize some notion of divergence [4, 5] between the
source and target distributions based on MMD [49,51,77,78]
adversarial [9,13,27,50,68,81,82,93], generative [8,36,70],
class-level [31, 44, 52, 55, 69, 89] or instance-level align-
ment [74, 85, 87] techniques. Clustering [23, 39, 41, 42, 54]
and memory-augmentation approaches [40] have also been
shown to be effective. However, most of these works are
shown to improve performance using standard datasets such
as Office-31 [64], visDA [57], OfficeHome [84] or Domain-
Net [56], where the distribution shifts typically arise from
unimodal variations in style or appearance between source
and target. While prior works also study semantic shift [6]
and sub-population shift [10], we aim to address a more prac-
tical problem of geographic domain adaptation with more
complex variations not covered by prior works.

Geographic Robustness Many prior works study biases of
CNNs towards 3D poses [1, 95], textures [29], styles [35],
natural variations [7, 60, 79] and adversarial inputs [35],
but robustness of computer vision towards shift induced
by geography is relatively under-explored. While algorithms
for bridging geographic domain gaps have been proposed
in [18, 41, 86], they are restricted to road scenes with limited
number of classes. A major hindrance has been the lack
of suitable benchmark datasets for geographic adaptation,
so several datasets have been recently proposed to address
this issue [24, 58, 61, 72]. Datasets based on dollar street
images [61] highlight the geographic differences induced by
income disparities between various countries, Ego4D [30]
contains egocentric videos with actions from various geogra-
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(b) GeoImNet

Figure 2. Class distribution in GeoNet Percentage of images per class from USA and Asia domains shown for the GeoPlaces benchmark in (a) and
GeoImNet benchmark in (b). The label distributions are long-tailed in both, and the dominant and tail classes are widely different across geographies in each
setting indicating a strong prior shift. (Best viewed in color, zoom in to see the class names).

Split GeoPlaces GeoImNet GeoUniDA

USA Train 178110 154908 100136
Test 17234 16784 25034

Asia Train 187426 68722 33912
Test 26923 9636 8478

classes-shared 205 600 62
classes-private - - 138

Table 1. Summary of GeoNet Number of images in train and test
splits in each of our benchmarks. While GeoPlaces and GeoImNet are
developed for unsupervised adaptation, GeoUniDA is developed for
universal domain adaptation across geographies.

phies, while researchers in [58] design an adaptation dataset
with images from YFCC-100M [26] to analyze geographic
shift. Adding to these efforts, we propose a much larger-
scale dataset for geographic adaptation consisting of more
diverse categories for place and object classification, across
factors of variation beyond income disparities.

3. Dataset Creation and Analysis

We present the overall summary of various datasets in
our benchmark in Tab. 1, including the number of images
and categories from each of our settings. In this paper, we
broadly consider US and Asia as the two domains, as these
two geographies have considerable separation in terms of
underlying cultural, environmental and economical factors,
while also providing the appropriate level of abstraction and
leaving enough data from each domain to perform mean-
ingful analysis. Although Asia is less homogeneous than
USA with greater within-domain variance, our adopted ge-

ographical granularity follows from the amount of data we
could retrieve from different countries using concepts in
GeoNet, where we observed general paucity in images from
many low-resource countries on Flickr. We also note that the
domain shifts caused by geographic disparities are not re-
stricted to these regions, and use images from Africa to show
similar observations of domain gaps in the supplementary.

3.1. GeoPlaces

We propose GeoPlaces to study geographic adaptation in
scene classification, which involves predicting the semantic
category of the place or location present in the image [96]. In
contrast to object classification, it is necessary to accurately
identify and understand various interactions and relation-
ships between the objects and people in the scene to predict
the appropriate scene category. In spite of rapid progress in
datasets [88, 96] and methods [14] for this task, robustness
of scene classification networks to unseen domains in gen-
eral, and across geographies in particular, has received little
attention, for which we propose a suitable benchmark.
Selecting Concepts and Images We use the 205 scene
categories from Places-205 [96] to build GeoPlaces, as
these semantic categories cover a wide range of real world
scenes commonly encountered in most geographies. We
build our GeoPlaces benchmark from the labeled Places-
205 dataset [97]. We first collect the unique Flickr identifier
(Flickr-id) associated with each image in the Places-205
dataset, and then use the publicly available Flickr API1 to
extract the GPS location of the image. Since only a fraction
of images belong to Flickr and a further smaller fraction

1Flickr.com/services/api/explore/Flickr.photos.geo.getLocation

https://www.Flickr.com/services/api/explore/Flickr.photos.geo.getLocation


(a) GeoPlaces (b) GeoImNet

Figure 3. Context Shift in GeoNet A few examples showing the nature of context shifts across categories from GeoPlaces benchmark in (a), and GeoImNet
benchmark in (a), arising due to a variety of differences between geographical disparity. For example, outdoor scenes (shopfront, marketplace) reflect the
demographies across geographies, indoor-scenes (living rooms, cafeteria) reflect cultural and economic variations and wildlife images reflect the habitat and
climatic variations.

Castle

USA

Asia

Candle

Figure 4. Design Shift in GeoNet We show examples illustrating the design shifts for the cases of castle from GeoPlaces and candle from GeoImNet. Note
that differences in designs of castles as well as the variety of objects like candles found across geographies lead to design shifts between the domains.

contain valid geotags, we end up with around 400k images
from 205 classes with associated geographical information.
Of these, 190k images are from the US domain, and we use
178k of them for training and 17k for testing. In Asia domain
however, we obtain only 27k images. To match the scale of
images from both domains, we perform an additional step
and manually collect more images as explained next.

Additional Data Due to the inherent US-centric bias of
photo-sharing websites like Flickr, a major portion of im-
ages are US-based. In order to collect more images from the
Asia domain, we directly scrape images from Flickr using the
205 category names from Places-205 as the seed concepts.
As many Asian users often post descriptions and tags for pic-
tures in languages other than English, we use translations of
these seed concepts in English to 6 Asian languages, namely
{Hindi, Korean, Japanese, Chinese, Russian, Hebrew}, and
use these along with the original concepts, as the augmented
or expanded concepts. Then, we search Flickr for images
which match the criterion that (i) they are geotagged in Asia,
and (ii) the tags associated with the image match with exactly
one of the categories in the expanded concept list (which we
assign as the label). We collect around 190k images this way,
and use this as the training set. Since images collected from
web tend to be nosier than human labeled ones, we use the

manually labeled 27k images from Places-205 as the test set
for Asia domain to ensure robust benchmarking.

3.2. GeoImNet

We propose the GeoImNet benchmark to investigate the
domain shift due to geographical disparities on object clas-
sification. Different from existing object-level datasets for
domain adaptation [56, 57, 64, 84], GeoImNet provides do-
main shifts induced by geographic disparities.
Dataset curation We collect images in the GeoImNet bench-
mark from the WebVision dataset [46], which itself is
scraped from Flickr using queries generated from 5000 con-
cepts in the Imagenet-5k dataset [22]. We then follow the
same pipeline as explained above for GeoPlaces benchmark,
and identify the GPS coordinates of each images using its
Flickr-id.
Concept Selection Although the original dataset contains
5000 classes, many of these classes are indigenous to a par-
ticular geography. For example, Bengal Tigers are found in
Indian subcontinent, and Bald Eagle is a North-American
bird. Since unsupervised domain adaptation typically de-
mands matching label spaces across source and target, we
select 600 categories out of the original 5000 with at least 20
images in each domain from each category. We then assign



roughly 15% of images from each domain into the test set
and use the remaining as the training images.
Dataset filtering WebVision is webly supervised [16], which
does not guarantee object-centric images or clean labels.
Therefore, we remove all the images from the dataset which
have more than one tag that match our selected concepts
(the 600 chosen categories) to handle multi-labeled images.
Furthermore, we manually quality-check all the test images
and remove all the images with noisy labels. Finally, we
perform de-duplication to remove images from the training
set which are very similar to those in the test set. More
insights into each step of our data collection and filtering
process is provided in the supplementary material. The final
label distribution for both US and Asia domains in both our
benchmarks is shown in Fig. 2.

3.3. GeoUniDA

Universal Domain Adaptation (UniDA) [91] facilitates
domain adaptation between source and target domains that
have few private classes, in addition to shared classes which
are common to both. While this is a realistic problem, prior
works [45, 65, 67, 91] use benchmarks created from existing
UDA datasets for evaluation. However, our proposed geo-
graphical adaptation setting gives us an unique opportunity
to design benchmarks for UniDA such that the private cate-
gories from the source and the target are a natural reflection
of the presence or absence of these categories in the respec-
tive geographical domains. In order to select the shared and
private categories for our Geo-UniDA benchmark, we first
start with the 1000 categories in the original Imagenet-1k
dataset [63], and select top 200 categories each in the USA
and Asia domains that have the most number of images from
the WebVision dataset. Out of these, we use the 62 common
classes as the shared categories, and the remaining 138 as
the private classes in each domain.

3.4. Analysis of Distribution Shifts

We denote the source dataset using Ds={Xs, Ys}, and as-
sume that Xs∼Ps(x) and (Xs, Ys)∼Ps(x, y) where Ps(x)
and Ps(x, y) are the image marginal and image-label joint
distribution respectively. Target dataset Dt = {Xs, Ys}
and target distributions Pt(x) and Pt(x, y) are defined sim-
ilarly, and the domain discrepency assumption states that
Ps(x, y) 6= Pt(x, y). In order to formulate domain shift
across geographies, we define fx as the part of image re-
ferring to the foreground objects (corresponds to the salient
objects in a scene) and bx to be the rest of the image cor-
responding to the background regions (corresponding to
the surrounding regions or context). For example, for the
task of classifying living room in Fig. 3a from GeoPlaces,
common objects like sofa and table are foreground, while
floor, roof and walls are backgrounds. We make a simpli-
fying assumption that an image is completely explainable

using its foreground and background and replace the class-
conditional distribution of the images P (x|y) with the joint
class-conditional P (bx, fx|y). Further, we also assume that
given a class label, the background is conditionally indepen-
dent of the foreground. Then,

P (x, y) = P (x|y) · P (y)

= P (bx, fx|y) · P (y)

= P (bx|y) · P (fx|bx, y) · P (y)

=⇒ P (x, y) = P (bx|y)︸ ︷︷ ︸
context

·P (fx|y)︸ ︷︷ ︸
design

·P (y)︸ ︷︷ ︸
prior

(1)

We define the class-conditional background distribu-
tion P (bx|y) as context, class-conditional object distribu-
tion P (fx|y) as design and the label distribution P (y) as
prior. Note that standard covariate shift assumption [4] as-
sumes uniform domain discrepency across all the images
(Ps(x)6=Pt(x)), which does not hold for geographic adapta-
tion due to the diverse source of variations. We analyze each
of these from a geographic adaptation perspective next.
Context Shift We define context shift to be the changes in
the context around an object or scene given by Ps(bx|y) 6=
Pt(bx|y). Deep learning models are generally sensitive to
object contexts and backgrounds, and learn spurious cor-
relations that impede their ability to recognize objects and
scenes in novel contexts [19, 20, 62, 75]. In geographic adap-
tation, context shift can be caused by differences in cultural
or economic factors across geographies, and few examples
illustrating context shift from GeoPlaces and GeoImNet are
shown in Fig. 3. While prior works already introduce con-
text shift for domain adaptation [58], a key difference lies
in their modeling assumption that the context is irrelevant
while training, while in our case context might play a key
role in improving scene classification on GeoPlaces.
Design Shift We define “design” shift as the change in ob-
ject structure, shape and appearance, where the foreground
objects belonging to the same semantic category look differ-
ent across geographies, given by Ps(fx|y) 6= Pt(fx|y). Few
examples are shown in Fig. 4, where categories like castle
from GeoPlaces and candle from GeoImNet datasets look
widely different due to high intra-class variance, although
they belong to the same semantic category. It is important to
note that context and design shifts might also occur within a
domain or within a geography. However, it is easier to ac-
count for intra-domain variations on labeled source datasets
than ensuring robustness to new and unlabeled geographies.
Prior Shift The label distributions across the domains in our
benchmarks widely differ due to natural prominence or rarity
of the classes according to the geography, as shown in Fig. 2,
where the head classes of one domain might be tail classes in
another. This leads to a prior shift where Ps(y) 6= Pt(y). For
example, categories like railway station, outdoor markets,
monasteries are common in Asia while baseball stadiums



GeoPlaces
Train ↓ / Test→ USA Asia Drop (%)
USA 56.35/85.15 36.27/63.27 -20.08/-21.88
Asia 21.03/44.81 49.63/78.45 -28.60/-33.64

GeoImNet
Train ↓ / Test→ USA Asia Drop (%)
USA 56.35/77.95 36.98/63.42 -19.37/-14.53
Asia 40.43/64.60 60.37/80.22 -19.94/-15.62

Table 2. Top-1/Top-5 accuracies of Resnet-50 models across geograph-
ically different train and test domains. Note the significant drop in
accuracies caused by the geographical domain shifts in each setting.

Original Balanced
USA Asia ∆ USA Asia ∆

GeoPlaces 56.35 36.27 20.08% 55.52 42.6 12.92%
GeoImNet 56.35 36.98 19.37% 52.72 37.3 15.42%

Table 3. USA → Asia comparison between GeoNet and its label-
balanced version. Non-trivial gaps between the geographies still exist
even after accounting for prior shift between the domains.

are more common in USA. Prior works examining prior
shift or label shift across domains [2, 3, 28, 48, 92] generally
assume that the class conditionals remain the same, which is
not true in the case of geographic adaptation due to context
and design shifts as illustrated above.

4. Experiments
4.1. Domain Shifts in Proposed Datasets

We illustrate the severity of domain differences across
geographies using the drop in accuracy caused by cross-
geography transfer in Tab. 2. Specifically, we train a Resnet-
50 [34] model using images only from one domain, and
compute the accuracies on both within-domain and cross-
domain test sets. Since a lot of categories in GeoNet are
close (example, train station vs. subway station), we use
both top-1 and top-5 accuracies to report the performance.
We observe a significant drop in accuracy caused by direct
transfer of models across domains which can be attributed
to the geographic bias in the training data. For example, a
model trained on GeoPlaces benchmark on US images gives
56.35% Top-1 accuracy on US images, but only 36.27%
on images from Asia with a notable drop of 20%. On the
GeoImNet benchmark, within-domain testing on images
collected from USA gives 56.35% top-1 accuracy while
cross-domain testing on Asia images gives only 36.98% with
a drop of 19.37%. The 36.98% accuracy is also much inferior
to the supervised accuracy on the Asia domain (60.37%)
which can be considered as the target upper bound.
Meta-category wise error analysis for GeoImNet We re-
late the drop in performances across geographies to the pro-
posed notions of domain discrepency in geographic adapta-
tion like context and domain shifts in Fig. 5. Specifically,
since the concepts in GeoImNet are sourced from ILSVRC,
we leverage the wordnet hierarchy to group our 600 classes
into 9 meta-labels. We then average the accuracy within
each meta-class from USA→Asia domain transfer, and plot
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Figure 5. Drop in accuracies for each meta-category in GeoImNet. Groups
that showcase context and design shifts suffer a larger drop in accuracy.

class: kitchen pred: art studio class: Fire Extinguisher pred: mongoose

class: gazelle pred: seaplane class: oil lamp pred: bouquet

(a)

(b)

(c)

(d)

Figure 6. GradCAM visualization of predictions of a USA-trained model on
Asia images show that prominent context and design shifts across geography
hurts accuracy. (a) is from GeoPlaces, (b,c,d) are from GeoImNet.

the difference in accuracy across domains per meta-label in
Fig. 5. We note that categories in the meta-label “animals”
have minimum design-shift across domains, but suffer from
context shift due to shifts in weather and habitats across
geographies leading to significant drop in accuracy. On
the other hand, many categories in “equipment” and “ob-
ject”(like candle, broom, sewing machine) have prominent
design shifts (Fig. 4) leading to notable performance drop.
Finally, categories in “food” (like bottled water, ice-cream)
have minimum change in both design and context and hence
suffer the least fall in accuracy across domains.
GradCAM visualization of the failure cases We present
few examples in Fig. 6 of predictions made on Asia test
images by a model trained on USA, along with their Grad-
CAM visualizations. As shown, when the model focuses
on the context and background, it fails to generalize to new
scenes from target geographies with notable shifts in con-
text (kitchen classified as art studio). Even in cases when
the model accurately focuses on the foreground object, it
sometimes leads to incorrect predictions due to design shifts
between geographies, where oil lamp is accurately localized,
but predicted as bouquet.
Separating the prior shift To further delineate prior shift
from context and design shifts, we curate a balanced subset
out of GeoNet such that each category has about 200-300
images, and drop categories which have fewer images (about
3/4th of the categories remain). From Tab. 3, the drop in ac-
curacy after addressing the prior shift is 12.9% on GeoPlaces



Method GeoPlaces GeoImNet
USA→ Asia Asia→ USA USA→ Asia Asia→ USA

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Source Only 36.27 63.27 21.03 44.81 36.98 63.43 40.43 64.6
DANN [27] 29.58 55.23 16.59 35.32 32.88 57.77 38.42 62.90
CDAN [50] 30.48 55.94 17.01 36.26 35.94 60.21 39.88 63.74
MCC [38] 30.09 55.85 17.17 36.85 35.71 60.48 39.86 64.00
SAFN [90] 32.50 57.93 14.34 35.68 32.40 58.43 36.26 61.58
MDD [94] 34.18 59.10 17.81 36.44 36.26 62.13 40.15 63.91
MCD [69] 33.49 59.41 16.57 34.74 25.60 48.45 36.69 60.68
ToAlign [87] 29.86 56.16 16.32 33.58 32.13 58.64 37.98 63.17
MemSAC [40] 34.68 60.52 15.75 32.83 36.71 63.16 40.34 64.40

Tgt. Supervised 49.63 78.45 56.35 85.15 60.37 80.22 56.35 77.95

Table 4. UDA on GeoNet Top-1 and Top-5 accuracies of various unsupervised adaptation methods on GeoNet. Most of the methods fail to sufficiently
handle cross-geography transfer on both GeoPlaces and GeoImNet benchmarks and often give lower accuracies even compared to a baseline model trained
only using source data calling attention to the need for novel methods that can handle domain shifts beyond style and appearance.

Method closed-set open-set H-Score Target Sup.

UniDA [91] 27.64 43.93 33.93
70.70%DANCE [66] 38.54 78.73 51.75

OVANet [67] 36.54 66.89 47.26
Table 5. Universal domain adaptation methods on GeoUniDA.
closed-set and open-set refer to the closed set and open set accura-
cies, and H-Score is the harmonic-mean of the two. Note the significant
gap that still exists with target supervised accuracy on closed-set labels
with the best adaptation method DANCE [66].

and 15.4% on GeoImNet, compared to 20.08% and 19.37%
on the original datasets, showing that non-trivial accuracy
drops caused by context and design shifts still exist even
after accounting for label imbalance between the domains.

4.2. Benchmarking Domain Adaptation

We study the effectiveness of prior unsupervised adaptation
algorithms in bridging novel notions of domain gaps like
context shift and design shift on GeoNet. We review various
standard as well as current state-of-the-art domain adaptation
methods to examine their geographical robustness.

Architecture and training details We follow the standard
protocol established in prior works [40, 50, 69] and use
an ImageNet pre-trained Resnet-50 [34] as the feature ex-
tractor backbone and a randomly intialized classifier layer.
We use a batch size of 32 and SGD with a learning rate
of 0.01 for the classifier head and 0.001 for the already
pretrained backbone. We report the top-1 and top-5 accu-
racy numbers using the test splits from each benchmarks.
We perform comparisons between traditional adversarial
methods (DANN [27], CDAN [50]), class-aware adaptation
methods (MCC [38], MDD [94]), non-adversarial methods
(SAFN [90], MCD [69]) as well as recent state-of-the-art
(ToAlign [87], MemSAC [40]). We train prior works using
their publicly available code and adopt all hyper-parameters
as recommended in the respective papers.

Existing UDA methods do not suffice on GeoNet We show
the Top-1 and Top-5 accuracies of all the transfer settings
from GeoNet in Tab. 4. A key observation is that most of
the domain adaptation approaches are no better, or some-
times even worse, than the baseline model trained only us-
ing source domain data, indicating their limitations for ge-
ographic domain adaptation. For example, on GeoPlaces,
training using data from USA achieves a top-1 accuracy of
36.27% on test data from Asia test images, while the best
adaptation method (MemSAC) obtains lesser accuracy of
34.7%, indicating negative transfer. Likewise, on GeoImNet,
a USA-trained source model achieves 36.98% on test images
from Asia which is comparable to the best adaptation accu-
racy of 36.71%. To further illustrate this, we define relative
accuracy gain as the improvement in accuracy obtained by
a method over a source-only model as a percentage of gap
between a source-only model and the target-supervised up-
per bound (which is 100% if the method achieves the target
supervised upper bound). From Fig. 1b, it is notable that
the same adaptation methods that yield significantly high
relative accuracy gains on DomainNet [56] yield negative
relative accuracy gains on GeoNet, highlighting the unique
the nature of distribution shifts in real-world settings like ge-
ographic adaptation that challenge existing methods. These
observations also suggest that future research should focus
on context-aware and object-centric representations in addi-
tion to domain invariant features to improve cross-domain
transfer amidst context and design shifts.

Universal domain adaptation on Geo-UniDA We run
SOTA universal domain adaptation methods (You et.al. [91],
DANCE [66] and OvaNET [67]) on the Geo-UniDA bench-
mark of GeoNet. Following prior works [67], we adopt
the H-score metric which is a harmonic mean of closed-set
and open-set accuracies giving equal importance to closed
set transfer as well as open set accuracy. In Tab. 5, we
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Figure 7. We show that most architectures and pre-training strategies exhibit
significant cross-domain drops when fine-tuned on geographically biased
datasets. Shown for USA→Asia on GeoPlaces, refer Fig. 1c for the plot on
GeoImNet and supplementary material for other transfer settings.

show that DANCE [66] outperforms both You et.al. [91] and
OVANet [67] on the Geo-UniDA benchmark. We also show
that a significant gap still exists between target supervised
accuracy when trained using supervision (70.7%) and best
adaptation accuracy (38.5%) on our benchmark, highlight-
ing the limitations of existing methods to efficiently address
universal adaptation in a geographic context.

4.3. Large-scale pre-training and architectures

It is common to use large scale self-supervised [11, 12, 15,
17, 32, 33] and weakly-supervised [37, 53, 76] pre-trained
models as starting points in various downstream applica-
tions. While recent works explored role of pre-training on
domain robustness [43], we are interested in the extent to
which large scale pre-training effectively preserved robust-
ness when fine-tuned on geographically under-represented
datasets. We investigate the performance of a variety of
methods on GeoNet in terms of backbone architectures, pre-
training strategies and supervision.

Experimental setup Our backbone architectures include
Resnet50 [34] as well as the small (ViT-S), base (ViT-B) and
large (ViT-L) vision transformers [25]. In terms of super-
vision, in addition to the standard supervised pre-training
on ImageNet-1k, we also consider self-supervised methods
MoCo-V3 [17], SwAV [11], DINO [12], MAE [32] trained
on ImageNet-1k, the weakly supervised SWAG [76] trained
on 3.6B uncurated instagram images and CLIP [59] trained
on 400M image-language pairs [71]. We denote {Backbone-
Supervision-Data} for different model choices (for example,
Resnet50-sup-IN1k indicates a Resnet50 pre-trained on su-
pervised data from ImageNet-1k).

For evaluating geographic robustness of these models, we
first take the pre-trained model and fine-tune it on training
data from a “source” geography, then evaluate the perfor-
mance on test data from the “target” geography. We show the
results using USA as the source and Asia as the target from
the GeoPlaces benchmark in Fig. 7, and GeoImNet bench-
mark in Fig. 1c. For reference, we also report accuracy after
fine-tuning on labeled data from the target geography for
each {Backbone-Supervision-Data} pair (denoted as target-
supervised), which serves as an upper bound for the transfer

performance.

Large-scale pretraining is not geographically robust
From Fig. 7, we make a few observations. Firstly, com-
parison between Resnet50 and ViT-S which have roughly
the same number of parameters suggests the superiority of
the vision transformer architectures over CNNs. For ex-
ample, ViT-S-sup-IN1k is better than Resnet50-sup-IN1k,
and ViT-S-moco-IN1k is better than Resnet50-moco-IN1k,
indicating that global reasoning using self-attention layers
in vision transformers benefits context-dependent tasks like
GeoPlaces. Next, comparing different pre-training strate-
gies, we observe that MoCo gives best accuracy on ViT-S
and ViT-B, while supervised pre-training outperforms other
approaches on large models like ViT-L. However, the gap
between target supervised accuracy and the best adaptation
accuracy achieved using either Resnet50 or any of the vi-
sion transformers is still high, highlighting the need for bet-
ter transfer strategies. In terms of data, weakly-supervised
pre-training using billion-scale dataset IG3.6B (ViT-B-swag-
3B) shows significant improvements over self-supervised
training methods like MAE (ViT-B-mae-IN1k) and DINO
(ViT-B-dino-IN1k). But despite training on massive-scale
data, ViT-L-swag-3B and ViT-L-clip-400M are still infe-
rior to the target supervised accuracies, revealing the limita-
tions of current pre-training strategies towards robust cross-
geography transfer after fine-tuning. While the success of
large-scale pre-training strategies are well-documented on
popular datasets like ImageNet, our results indicate that
similar benefits might not be observed when application do-
mains significantly differ from pre-training or fine-tuning
datasets [21].

5. Conclusion

We introduce a new dataset called GeoNet for the prob-
lem of geographic adaptation with benchmarks covering the
tasks of scene and object classification. In contrast to exist-
ing datasets for domain adaptation [56,57,64,84], our dataset
with images collected from different locations contains do-
main shifts captured by natural variations due to geographies,
cultures and weather conditions from across the world, which
is a novel and understudied direction in domain adaptation.
Through GeoNet, we analyze the sources of domain shift
caused by changes in geographies such as context and de-
sign shift. We conduct extensive benchmarking on GeoNet
and highlight the limitations of current domain adaptation
methods as well as large-scale pretraining methods towards
geographical robustness. Finally, in spite of geographical
diversity in GeoNet, we note a possible limitation of indirect
bias towards USA as the user-base on photo-sharing sites
like Flickr is dominated by the US. Creating datasets that are
a more natural reflection of cultures and trends from diverse
geographies and devising learning algorithms robust to those



variations is an exciting proposition for the future.
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A. Performance on additional geographies
In Table 2 in the main paper, we illustrated cross-domain

drops across geographies for the case of USA↔Asia. We
show that this phenomenon is not specific to these geogra-
phies, and similar cross-domain drop in accuracy can be
observed in case of Africa as a new geographical domain.
For this purpose, we follow a similar pipeline discussed
in Section 3.1 of the main paper and collect images from
Africa belonging to the 205 classes from Places-205, creat-
ing the test-set for Africa domain for GeoPlaces with 8358
images. For the case of GeoPlaces, we show in Tab. 6 that
a model trained on USA obtains only 32.2% on test images
from Africa with a significant drop of 24%, and a model
trained on images from Asia only gets 26.77% top-1 accu-
racy on Africa test images with a drop of 23% compared
to within-domain test accuracy. These results indicate that
cross-domain transfer exhibits similar challenges across any
geographically separated domains.

B. Visualization of Context and Design Shifts
We provide deeper insight into the cross-domain shifts

in contexts and designs induced by the geographies by vi-
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Figure 8. tSNE Visualizations of context and design shifts in GeoNet. As shown, there is a notable separation between the context and design features
between USA (in orange) and Asia (in blue) in both GeoPlaces and GeoImNet.

GeoPlaces
Train ↓ / Test→ USA Asia Africa
USA 56.35/85.15 36.27/63.27 32.20/51.97
Asia 21.03/44.81 49.63/78.45 26.77/47.90

Table 6. Cross-Geography Drops on GeoPlaces Top-1/Top-5 accu-
racies of Resnet-50 models across geographically different train and
test domains, including a new test-set from Africa domain.

sualizing their tSNE feature representations [83]. To this
end, we first recall that we defined context of an image x
as bx representing the background regions in an image, and
design fx as the foreground objects (Section 3.4 in the main
paper). However, we do not have box or mask annotation
corresponding to the images in GeoNet, so it is not pos-
sible to directly infer the context and foreground in each
image. Instead, we rely on a state-of-the-art object detector
Mask-RCNN trained on COCO dataset [47] for this purpose.
Specifically, we train a class-agnostic Mask-RCNN on the
COCO dataset by mapping all the class labels to a single
foreground class. We then identify all the masks detected
by the network on our images, so that these masks then cor-
respond to the foreground objects, while the other parts of
the image corresponds to the background. To compute the
feature representation of the foreground objects, we element-
wise multiply the binary foreground mask with the deep
feature map from the backbone Resnet-50, followed by a
global pool. In other words, we use the binary foreground
mask to select the area from the feature map corresponding
to the foreground, and take an average of the locations to ob-
tain a 2048-dimensional foreground feature vector per image.
We similarly obtain a 2048-dimensional background vector
by using the negation of the binary foreground mask as the
background mask. Therefore, we end up with two feature
representations per image pertaining to the foreground (de-
sign) and background (context) respectively. We repeat this
for both domains USA and Asia from both the GeoPlaces
and GeoImNet splits of our dataset. We then project this
2048 dimensional vector into a 2-dimensional vector using
tSNE reduction and visualize the embeddings in Fig. 8.
Context Shift The pronounced distinction in the contexts
between the two domains from GeoPlaces is highlighted
in Fig. 8a, where we show minimum overlap between the
features corresponding to the background regions in USA

and Asia. Similar observations also hold for the case of
GeoImNet in Fig. 8c. Since the background or the context
plays a major role in identifying places or objects, this shift
invariably results in drop in accuracy under cross-geography
transfer.
Design Shift The tSNE features of the foreground regions
is shown in Fig. 8b for the case of GeoPlaces and in Fig. 8d
for GeoImNet. Minimum overlap is observed between the
features corresponding to the foreground, or design of the ob-
jects, in each case indicating the presence of notable design
shift between the domains.

We also note that datasets like COCO are predominantly
US-biased, so the use of COCO in analyzing distribution
shifts on Asia images is not completely fair. To this end,
manually annotating images with finer-grained foreground
and context labels in both geographies would yield more
accurate analysis, which is left as a future work.

C. Geographic Distribution of Images
While we broadly categorize Asia and USA to be the two

major geographical domains, not all sub-regions in these
geographies have equal representation. We show the geo-
graphic distribution over respective geographies in Fig. 9, by
leveraging the per-image GPS metadata provided in GeoNet.
For images from Asia from Fig. 9c for GeoPlaces and Fig. 9d
for GeoImNet, we observe a large fraction of images from
Japan, India, Korea, China and Taiwan, while some countries
are more sparsely represented. Likewise, in USA in Fig. 9a
and Fig. 9b, we observe a significant share of images from
California, New York and Florida than other regions. These
distributions reflect the larger user demographic biases in
photo-sharing websites like Flickr from where all our images
have been taken from.

D. Error Analysis of Unsupervised Adaptation
While we show in the main paper (Table 3) that existing

unsupervised adaptation approaches yield limited benefit for
geographical adaptation, we conduct a deeper analysis into
the per-class accuracy post-adaptation in Fig. 10 for the case
of USA→Asia on GeoPlaces. Specifically, we first take a
model trained only on USA images, and compute the drop in
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Figure 9. Geographical Distribution of images from USA and Asia domains. We show the images per geographical sub-region in both domains on
GeoNet. As shown, in Asia, a majority of images are from Japan, India, Korea, China and Taiwan while in USA, a majority of images are from populous
regions like California and New York. Note that the color-bar scale is linear for USA and log-scale for Asia.

per-class accuracy suffered by direct cross-domain transfer
on Asia test images. We show this in Fig. 10a, where classes
like mausoleum, assembly line and kitchen suffer the largest
drops in accuracy. Next, we carry the same analysis using
a model trained with CDAN [50] adaptation method. From
Fig. 10b, we observe that the trends in per-class accuracy
drops are mostly similar with or without using CDAN adapta-
tion, indicating that the benefit achieved using an adaptation
method is negligible on all the categories. Similar observa-
tions also hold for the case of adaptation using ToAlign [87],
underlining the fact that existing state-of-the-art adaptation
methods cannot handle geographic shifts across most cate-
gories.

E. Data De-duplication

Since a lot of users tend to upload multiple pictures of
the same scene on sites like Flickr, we carry a data de-
duplication exercise so that there are no such duplicate copies
of same images in train and test sets which would unfairly

improve within-domain accuracy. We first group all the
images in the train and test sets which belong to the same
geographical location, by discretizing the GPS coordinates
within one degree. Then, within each group, we first resize
the images to 32x32x3, and compute a histogram of the im-
ages along the RGB channels. We also flatten the image and
compute the euclidean distance between all pairs of images
within the same group and remove all images from the train-
ing set which are “similar” to images in test set, where two
images are similar if they belong to the same GPS group, and
have RGB histogram, euclidean distance lower than preset
thresholds.

F. Large-scale pre-training on GeoNet

In Fig. 11, we show the effect of large-scale pretraining
on the transfer setting Asia→USA from GeoPlaces(Fig. 11a)
and GeoImNet(Fig. 11b). We make similar observations
as the transfer setting from USA→Asia in the main paper.
Specifically, we show that transformers outperform Resnets,



(a) Source-Only Training

(b) CDAN Adaptation
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Figure 10. Per-class accuracy drops on USA→Asia transfer for a plain source-only model as well as post-adaptation using CDAN [50] and ToAlign [87]
adaptation methods. Note that the trend of per-class accuracy drops is the same before and after the adaptation indicating the limited benefit offered by
existing state-of-the-art adaptation methods in bridging geographical shifts.
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(b) Asia→USA on GeoImNet

Figure 11. Large-Scale pre-training on GeoNet We show that most architectures and pre-training strategies exhibit significant cross-domain drops when
fine-tuned on geographically biased datasets. Shown for Asia→USA on GeoPlaces in Fig. 11a and GeoImNet in Fig. 11b, refer main paper for other transfer
settings.

pre-training using billion-scale datasets like SWAG [76]
outperforms ImageNet-pretraining and all models still have
significant gap with the target supervised accuracy indicating
the limitations of these models in bridging cross-geography
domain shifts.

G. Effect of label-cleaning on GeoImNet
Before the current version of GeoImNet with 600 classes,

we created a slightly larger, albeit more noisy 700 class ver-

sion. We then observed that although these concepts have
been selected from ImageNet, there were many ambigu-
ous classes (like fancy dress, frozen yogurt,
prey, flash, walking stick) etc. So, we re-
moved 100 such classes with ambiguous concept meanings,
and created a newer version with 600 classes, which is even-
tually used in benchmarking and release. In Tab. 7, we show
the cross-domain accuracies with the older version. We ob-
served that while the cross-domain drops remain the same,



GeoImNet-Before Filtering
Source ↓ / Target→ USA Asia Drop(%)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
USA 46.63 67.85 29.69 51.43 -16.94 -16.42
Asia 31.55 52.28 52.93 72.96 -21.38 -20.68

GeoImNet-After Filtering
USA Asia Drop(%)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
USA 56.35 77.95 36.98 63.42 -19.37 -14.53
Asia 40.43 64.60 60.37 80.22 -19.94 -15.62

Table 7. Top-1/Top-5 accuracy of models across geographically dif-
ferent train and test domains with a more noisier 700-class version of
GeoImNet.

the absolute accuracy themselves are much higher using a
cleaner version of the dataset.

H. Sample Images
We show few sample images from selected classes across

both USA and Asia domains in GeoPlaces benchmark in
Fig. 12, Fig. 13 and GeoImNet benchmark in Fig. 14, Fig. 15.



Figure 12. Sample images showing the domain gap between USA (left) and Asia (right) domains for classes garbage dump,
race course, phone booth and cafetaria from GeoPlaces.



Figure 13. Sample images showing the domain gap between USA (left) and Asia (right) domains for classes art gallery, kitchenette,
conference room and ice-cream parlor from GeoPlaces.



Figure 14. Sample images showing the domain gap between USA (left) and Asia (right) domains for classes Yorkshire Terrier, bouquet, sea
anemone and dog from GeoImNet.



Figure 15. Sample images showing the domain gap between USA (left) and Asia (right) domains for classes Field Mustard, Water Bottle,
Tramway and Samosa from GeoImNet.
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